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An initial “random polygon” on the plane with n vertices is equivalent to
the data of a vector v ∈ Cn. The averaging process is equivalent to applying the
matrix

A =
1

2
(I + T )

on v where I is the identity matrix and T is the standard shift matrix given as
Tij = δi,j+1 where the indices are interpreted mod n. Therefore averaging N
times simply amounts to taking the entries of ANv and plotting them on the
complex plane.

A crucial role is played by the eigenvalues and eigenvectors of A. The diag-
onalization of A simply amounts to diagonalizing T which is well-known: One
notes the matrix equation Tn = 1 which is actually the characteristic poly-
nomial of T . Thus the eigenvalues satisfy ωn = 1, that is, they’re simply
the nth roots of unity. The corresponding eigenvectors are also easy to write
down. Let ω = e2πi/n. Then the (normalized) eigenvector corresponding to ωk

(k = 0, ..., n− 1) is simply

(ek)j =
1√
n
ωkj .

A will have the same eigenvectors ek with corresponding eigenvalues given by

λk =
1

2
(1 + ωk) = eiπk/ncos

(πk
n

)
.

From this one can easily see that the largest eigenvalue is given by k = 0 when
λ0 = 1 and the eigenvector is simply given by (e0)j = 1√

n
. The others have

magnitude strictly less than one with the second largest one corresponding to
k = ±1. Now T being a unitary matrix means that the eigenvectors form an
orthogonal basis for Cn and so we can easily expand v in terms of this eigenbasis

v =

n−1∑
j=0

〈ej , v〉ej
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where we note that the j-th coefficient given by the inner product 〈ej , v〉 is
simply given by the discrete Fourier transform

xj := 〈ej , v〉 =
1√
n

n∑
k=1

vje
− 2πikj

n .

The action of AN now reads

ANv =

n−1∑
j=0

xj(λj)
Nej :=

n−1∑
j=0

(λj)
Nαj

Let us now interpret each of the terms in decreasing absolute value of λNj . First,

α0 is simply the vector with all entries 1
n (v1 + ...+vn) which corresponds to the

center of the initial random polygon. We can freely choose this to be zero. The
subleading term i.e the term

E := (λ1)Nα1 + (λn−1)Nαn−1

is what will play the crucial role. Writing it out explicitly we have

Em =
1√
n

(cos(
π

n
))N (x1 e

iπN
n e

2πim
n + xn−1 e

−iπN
n e

−2πim
n )

where x1, xn−1 are components of the discrete Fourier transform as given above.
The rest of the terms can be neglected for large N and so E is what should give
us the sought-after ellipse. Indeed plotting this as in the program E(L,n,N) this
traces out precisely the ellipse matching the program IterPolygon1. It should
be possible to figure out the properties of the ellipse such as its eccentricity and
orientation from the coefficients x1 and xn−1, which are the only remnants of
the initial vector v, although I haven’t had the time to do that.
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