1 Problem 1

All but one row of the Jacobian matrix of an elementary transformation in n dimensional space equals the corresponding row of I_{n}. Call the exception row k : then column k has entry a and some column $m \neq k$ has entry $r \cdot b x_{m}^{r-1}$. By the laws of determinants, the Jacobian determinant is

$$
1 \cdot a+0=a
$$

corresponding to the composition of row multiplication in row multiple addition applied to I_{m}.

2 Problem 2

By the Inverse Function Theorem, since an elementary transformation is continuously differentiable it is invertible if its Jacobian determinant is nonzero i.e., if $a \neq 0$. Moreover, its inverse has Jacobian the inverse of the Jacobian matrix.

From the matrix that yields the opposite transformations to those of Problem 1, we obtain

$$
\begin{align*}
\frac{\partial f_{k}}{\partial x_{k}} & =\frac{1}{a} \tag{1}\\
\frac{\partial f_{k}}{\partial x_{m}} & =-r \cdot b v^{r-1} \tag{2}
\end{align*}
$$

where the indices retain their meanings from Problem 1. Hence the inverse transformation is

$$
\left(x_{1}, x_{2}, \ldots, \frac{1}{a} x_{k}-b \cdot x_{m}^{r-1}, \ldots, x_{n}\right)
$$

