Opinion 48: Some Suggestions to the IMU About Future ICMs
By Doron Zeilberger
Written: Oct. 11, 2002

Choose plenary (and invited) speakers who can give good general talks.
Once chosen, they should go to a ``training camp'' and
get feedback from each other and especially from ``coaches''
who are known to be good speakers. In ICM2002, some talks
(including Lafforgue's) were way too technical (in spite
of the good intention of the speakers)
and only about a half (e.g., in the first week, those
by Noga Alon, Shafi Goldwasser, Michael Hopkins,
Douglass Arnold and David Mumford) were really excellent.
(For more details about my impressions from ICM2002 look at
Appendix to Opinion 48: Impressions from ICM 2002
.)
I understand that to be chosen a plenary speaker is an honor,
so in some cases, where the chosen speaker is a great mathematician
but a bad speaker, have someone else give the talk for him or her.

Have a census of mathematics every four years and
accordingly shrink traditional sections and create new sections
for emerging fields like Symbolic Computation.

In Recent congresses there was at least one plenary
speaker in Numerical
Analysis (e.g. Wolfgang Hackbusch in Berlin and Doug Arnold in Beijing).
Have also at least one speaker in Symbolic Computation.

Make the Fieldsmedal committe and decisions less inbred. It seems
that a necessary condition for a Fields medal is to extend or elaborate
works of past Fields medalists. Also, don't go overboard with
the Langlands program. It did have its successes. and it is very interesting,
but so are many other research directions. The FLT success may have
been a fluke, that has nothing to do with the substance of the program itself,
and like, for example, `analytical proofs' in combinatorics, that can
be done much easier with formal power series, or de Branges's original
100page `operatorthoery' proof of Bieberbach, that can be shrunk to
a few pages of formal calculus, I am almost sure that the dependence of
Wiles's proof on the Langlands program is not intrinsic, but a historical
coincidence that made its embedding in the Langlands program
(discovered by Frey and Ribet) tractable to Wiles and Taylor.

For the Combinatorics committee: algebraic and enumerative combinatorics
is underrepresented.
Doron Zeilberger's Opinion's Table of Content
Doron Zeilberger's Homepage