
Theoretical Computer Science 34 (1984) 169-206 
North-Holland 

169 

ALGEBRAIC LANGUAGES AND POLYOMINOES 
ENUMERATION 

Marie-Pierre DELEST 
D@artement d l Informatique, UniversitP Bordeaux II, 33076 Bordeaux Cedex, France 

Gerard VIENNOT 
U. E. R. Matlr4masiques et hformatique, Umbersitt! Bordeaux 1, 33405 Talence, France 

A notre ‘bon maitre‘ M.P. Schiitzsnberger 

Abstract. In this paper, the u.)e of algebraic ianguages theory in solving an open problem in 
combinatorics is shown. By constructing a bijection between convex polyominoes and words of 

an algebraic language, atjd bq solving the corresponding algebraic qstem, we proie that the 

number of convex polyominoes with perimeter 2n + 8 is (2n + I1 )4” -4(2n + 1 )t2,F). 

1. Initoducth 

Let A, be a class of combinatorial ObJeCts enumerated by the integer a, and 
suppose that the corresponding generating function f( f) = CnsO a,?” is algebraic. An 
old idea, dear to M.P. Schiitzenberger, is to explain this algebraicity by expliciting 
a bijection between A,, and the words of a certain algebraic (context-free) langua,ge 

L defined on the alphabet X by a non-ambiguous grammar. 

Classically, from the non-ambiguous grammar, one can associate a proper alge- 
braic system of equations in noncommutative power series. The unique solution of 
the system contains the (noncommutative) generating function t = C H,E L w of the 
language L. By sending all variables x of X onto one variable t, the series L becomes 
$(I) =)_ u ?I 30 a,,t", solution of an algebraic system in one variable t (see Schtitzenberger 

[34,35]). 
Usually an explicit formula is known for a,, or .f( t) by means of classical calculus 

techniques used in combinatorics (recurrence relation, Lagrange inversion formula, 
etc.). The coding with words sheds more light upon the combinatorial comprehension 
of A,,. Each equation of the noncommutative algebraic system is in fact a com- 
binatorial property of the objects of A,,. The coding with words appears to be a 
nice intermediate between the combinatorial objects themselves and the generating 
function in one variable f(t). 

Classical examples are those used with enumeration of trees or related objects 
and can be found in [I 5, 17,23,24]. Deep-going examples are found in the work of 
Cori and Vauquelin [6,8], following the numerous formulae enumerating planar 

maps (Jbtained by Tutte et al. (see, for example, [37]). 
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In this paper, the method is reversed: no formula is known for Q, or f(t), nor 
the fact that f(l) is algebraic. We use the algebraic language methodology to prove 
this fact and obtain an explicit formulla. Here, A,, is the set of convex polyominoes 

with perimeter n. 
Unit squares having their vertices at integer points in the Cartesian plane are 

called cells. A polyomino is a connected subset of the plane which is a finite union 
of cells and has no cut set, that is, the interior is also connected. The number of 
cells is the are’Lz of the polyomino, the length of the border is the perimefer. 

Polyominoes are defined up to translation. Note that, in the enumeration considered 
here, symmetries or rotations are forbidden. 

Polyominoes are classical objects in combinatorics and have been popularized 
by Gardner and Golomb [ 161. Except for some special class of polyominoes, very 
few exact formulae are known. Enumeration of (general) polyominoes is a major 
unsolved problem, al:;0 called the cell growth problem. Since Read [3 I], polyominoes 

. 
are also called (fixed) alvimals. 

A huge number of asymptotic results has been given by physicists for whom s;?rch 
objects are important in statistical mechanics (they call animal the set of points 
obtained by taking the center of each cell of a polyomino). 

A polyomino P is said to be column- (respectively row-) convex if the intersection 
of P with any vertical (respectively horizontal) line is a connected segment. A cotrL!e.: 
polwmina is a polyomino which is both column- and row-convex (see Fig. 1). 

Klarner [ 1 !j] gave an explicit expression for the genertlting function of row-convex 
pol~omiroes enumerated according tlo the area. The generating function is rational 
and is obtained by using a combinatorial interpretation of Fredholm integral 
operation [20]. 

Kruuth raised the problem [21] to give some information about the number of 
wr3ve.y polyominors. Klarner and best [Zl] and Render [I] gave asymptotic 

Mmates for the number a,, of ~:0ww polqominoes having atea tl. More precisely, 

II,, c-/’ with y = 2.30914.. . and I’== 2.6?564.. . . 
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We give here an exact formula for the number p2” of convex polyominoes having 
a perimeter 2n. Surprisingly the result is very simple. 

Theorem 1.1. The number p2n of convex polyominoes having a perimeter 2n is 

P4’ 1, pb=2 

and for n 2 0, 

m;nts =:2ntll)4” -4(2n+ l)(c). 

The method makes use of three steps: 
Step (i) Bijection between convex polyominoes and words of an algebraic 

language. In fact, three different types of palyominoes, and thus three languages, 
have to be considered. 

Sfep (ii) Solving the three corresponding algebraic systems and obtaining the 
generating function p(t) = x,, _Q pJn. These systems have about 20 to 40 equations 
each. We are thus led to employ carefully the algebraic language methodology by 
using auxiliary algebraic languages and some substitution operators. Also, multi- 
head finite automata can be used in order to encode convex polyominoes of the 
second type V-WI wolrds of a rational language (accepted by a jinite automata), and 
thus reduce the computation of the corresponding generating function to a deter- 
minant calculus (in our case the matrix has size I6 x 16). The final solution (especially 
for polyominoes of the third type) has been made possible using the symbolic 
manipulation system MACSYMA from MIT. 

Sfep (iii) Expanding the generating function p(t) in order to obtain the formula 
for pzn. 

Remark 1.2. To the knowledge of the authors, no ‘classical’ proof of Theorem 1.1 
has been found yet. 

Remark 1.3. The concept of convex polyominoes appears in some algorithmic 
problems related to htegrated circuit manufacture. A layer of an integrated circuit 
is printed on a photographic plate by flashing rectangles and produce an image 
equal to their superposition. The plate will become a photographic mask in the 
manufacture of integrated circuit. The image is a (union of) polynminoes. Neglecting 
some additional technical constraints, the problem iq to produce the image using 
as few rectangles as possible. Masek [26] proved that finding the minimum number 
of rectangles is NP-complete. Chaiken et al. [9] established a beautiful min-max 
property about this number in the case of convex polyominoes, for which a poly- 
nomial time algorithm can be deduced. Then, Berge et al. [2] looked for possible 
extensions to vertically convex polyominoes and the so-called ‘pataconvex’ poly- 
ominoes. 

For another example of relationships between poiyominoes, and VLSI and non- 
conventional architectures, see Van Leeuwen [38]. 
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This paper has been made self-contained for both ‘combinatorists’ and ‘theoretical 
computer scientists’. 

We recall a few geometric notations used in all this paper. 

Notations. Thd: plane Z xZ! is denoted by II. A path w is a sequence o = 

( so, Sl, - - l 9 s, ) of points of I7. The point so (respectively s,,) is the starting (respec- 
tiv6lyJinaf) p,oint. The length of o is the integer n. Each pair ( si, Si+ I ) is an elementary 
step of the path. The elementary step (si, q,,) is called North (South, East, West 
respectively) iff si = (x,Y), s~+~=(x',Y') with X=X', y'=y+ 1 (x= x', J~'=_v- 1; 
x’ = x+ l,y=y’; x’=x-1, _y=;*’ respectively). 

2. Algebraic hnguages (for ‘pure’ combinatorists) 

This section has been introduced ror the combinatorists not familiar with the 
classical concept (in Theoretical Computer Science) of algebraic language. We will 
not give complete formal definitions for every notion we use, but we will, with 
examples, give a brief outline of what is necessary. For more details, see the works 
of Berstel [3], Ginsburgh [ 141 or Salomaa and Soittola [33]. 

Notations. Let X be a finite nonempty set called alphabet. We denote by X* the 
free monoid generated by X, that is, the set of words written with letters from X, 
together with the product defined as the concatenation of two words: for 14 = 1~ . . . 14, 

nnd c = L‘, . . . v,, we hve 14~’ = 14~ . . . u,v, . . . q,. 

The ernptl’ MYW~ is denoted by e. The number of’ occurrences of the letter s in 
the word w is denoted by 1~1,. and the length of 1%’ by [M*[== x ,, s Ib~l,. lf the word 
w can be fxtorized as u’ = ufv, we say that the word II (,J u respectively) is a rcfi 
jiirtor (_factor, right Jactor respectively) of b\*. 

Let IK be a unitary commutative ring (in fact W will be Z or Q). We denote by 
W((X)) (respectively W[[X]]) the algebra of noncommutative (respectively commuta- 
tive) power series with variables from .Y and coeflicients in 06 Ry commuting 
variables, one obtains a canonical morphism (Y : K(( 3’)) + W[[X]]. 

/I larpage is nothing but ;I subset of .Y*. For any language L. we associate the 
generating function L = I,, t I w, element of L((X)). Note that for every language A, 
B, C, the equality C -1. A . B means that C = .M and that any word \V of C‘ has a 
unique factorization w = tfv with u E ‘4, ~7 E B. 41~0 the equality C = A + B means 
Q’=AuRandAnB=~4. 

An algetmic (also called cwntest$k) granmar is a 4-tuple C = ( IV, A’. P, .d where 
,V -md S are tinite disjoint sets, s is an element of N and P is a finite set of pairs 
t tt, /.3) with (Y ~3 Iv and p E ( N u X P. Such a pair is called a prv,dwtiort and aho 

dem.,t~d by CY -+ p. 
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Starting from S, one defines a set of words of (N u X)* by applying recursively 
substitutions of the form ucuu + u@ with (q 3) E I? The subset of words of X* is 

called the language generated by G and denoted by L(G). Such a language is called 

algebraic (or context-jlkee). We give some (very elementary) examples that wilt be 

used in this paper. 

Example 2.1 (Dyck word). Let G = (N, X. P, s) with N = {D}, X = {x, Z}, s = D and 

P is given by tht two productions D + xD%D, D+ e. The language L(G) is the 
classical ‘restricted Dyck language’ on two letjers. Throughout this paper, this 

language will be called Dyck language for short and will be deuoted by D. The 

words w of 11, or Dyck words, are chara;reri&d by the two following conditions: 
(I) for any left factor of u of w, 1~1~ 3 IuliJ 
(2) lw*l, = Iw&. 

Example 2.2 (Motzkin word% The words M; of {x, 3, b}” (respectively (x, 2, 6, r}* j 
satisfying the above conditions ( 1) and (2) are called Mot&in words (respectively 

kolored Motzkin words). Tlhe Motzkin words are generated by the followiing 

grammar: 

N = (M}., s = M, x = (x, x, b}, 

By adding the rule M + rM, one obviously obtains a grammar for the Z-colored 
Motzkin words. 

Example 2.3 (Fibonacci word ). Let FB be the set of words of i-u, a}* which can be 

factorized as a product of words reduced to “a” or xx, and having an even length. 

Such words are generated by the algebraic grammar: 

N={F‘B,G), s = Fi3, X = {x, a) 

and productions 

FB --, aG, F -+ ssFl- , FB+e, G-+aFB, G + .xxG. 

In this paper, such words will b: called Fihonacci words (of even length) and will 

appear in Section 2. 

The three above examples are examples of a non-ambiguous algebr,;ic grammar 

G, that is, each word of L(G) car! be formed in a ‘unique way’ using the productians 

of f. For example, every Motzkjn word MI is either the empty word (produced by 

AI+ e), or produced by iVI -+ t&i\, or produced by A4 + xM_fM. Also, in the second 

t respectively third) case, the fal:torization w = hv, v E M (respectively w = XUXV, 

14 E A4, L’ E M) is unique. 
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Such properties for the above examples are equivalent to state the following 
equalities, in algebra H(( X)) for the corresponding (noncommutative) generating 
functions (where CM denotes the set of 2-colored Motzkin words): 

(3) 

(4) 

(9 

(6) 

D= l+xD.%D, 

M=I+bM+xMlfM, 

CM= ‘i + bCM + KM 3- xCM~CM, 

FB= I taC+xxFB, C=aFB+xxG. 

The step going from the non-ambiguous algebraic grammar to the corresponding 
algebraic system in Z((X)) can be done in a general way. Each element cy in N 
corresponds to ai.1 equation LY = Ci pi, where the pi’s are all the words appearing in 
the production of the form (x + p,. In the ‘good’ cases the system has a unique 
solution (in the cy’s). For more details, see, for example, the works of Nivat [28] 
or Salomaa and Soittola [33], and the pioneer papers of Schtitzenberger [34,35] 
and Chomsky and Shiitzenberger [5]. 

Now, if one wants to enumerate L(G) n X” (the words of length 11 of the language 
L(G)), one sends by a morphism 0 all variables x f X onto a single variable t. We 
obtain an algebraic system for the corresponding (ordinary) generating function 
fH L) =J(r) = C,, _(, a,$’ (with Q, = IL(G) n X”I). 

For the above examples we can solve the corresponding one-variable equation 
or algebraic system and obtain the following equations: 

(7) 8(D)==c(r)= 
1 -( 1 -4lZ)“J 

,tz - (Dyck words). 
(_ 

(8) H(fVI) = rn(,t) - 
(1 -t)-(I -2r-33’,? 

21’ 
(Motzkin words ), 

(9! 
(l-2+-(1 -4t)“’ 

O(CM)=cm(t)=- 
2tZ (Zcolored Motzkin words ), 

I_-,> 
I lo) H(FB)=~(~)=~-II,+ (Fibonacci words with even length 1. - _ 

Note that the coefficient of 1”’ in ~(0 is the classical I’afalar~ nunrber C’,, 5= 

[ I ,I’( II + 1 )I( 2:‘) (which can be obtained by expanding in p”owcr series t ( t I). Also, the 
coefficient of I” in n~( t) is the less classical R/lr~t~kir~ twttlbcr &I,,. Note also the relcition 

(III 1 + f’cm( I’) = c-(I), 

which implies that the number of 2- colored Motzkin words of length II equals the 
Catalan number C,, + , (see a bijective proof in Section 3). 

The coeficient of I”’ inj( t) is the Fibonacci nutttber Fi,, (defined by the recurrence 
&, * , LX F-,1 + F” ,_ F,, = F, = I ). 

The language FH of Example 2.3 is in fact a rtdotwl language, that is. ti langu:lge 

which can be obtained by qqA_ving recuwively, from the family of tinite languages, 
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the three operations 
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union(A, B) + A u B, 

product( A, B) -* AB = (w = uv, u E A, v E B}, 

star operation A + A*, submonoid of X* generated by A. 

For example, we can write 

(12) F9 = ({_YX}LJ a(xx)*d*. 

Such an expression for a rational language L, using only the three operations 
union, product and star operation is called a rational expression of L. in the same 
way as above for grammar, one can define a non-ambiguous rational expression. 
From such an expression for L, one immediately deduces an expression for L by 
replacing the operations (for languages) union, product and star, respectively by 
sum, product, and ‘quasi-inversion’ A* --* ( 1 - A)-’ (in the algebra Z{(X))>. Applying 

morphism #, one obta’ ‘5 the generating function f(t) for a,, = IL n X”l. 

Also, it is posGble char the ~1 n.Alar defining L lezdk to a linear system for f’(t). 
The calculus is rhus reduced to a determinant calculus. 

L can aIF0 + &fined by a so-called jinite automclron, that is a 5-tuple A = 
(S, s, F, X, y ) where S is a finite set (the state?), s E S ( initial state), FE S ($4 
states), X a finite set (input alphabet) and p : S XX + S (transition function). The 
action of p is extended to words of X* by defining CL* : S x X* + S with p*(s, ux) = 
p(p*(s, u), s). A word w of X* is accepted by the automaton A iff p*(s, W)E F. 
The well-known Kleene’s Theorem states that L is rational iff L is accepted by a 
finite automata. 

Us&iiy a finite automata is visualized by a labeled graph, with vertices the states 
and labeled arrows corresponding to EL. An automaton accepting the Fibonacci 
bl*ords of FB of Example 2.3 is displayed in Fig. 2. 

: , 1 

x / 
i x x i \ I 

X={a, X) 

\ I a i 

\ $J,/---- 
-------- - 

-----L \ --a v 
-1 

- . .._ 
3 

u/ ---- -- 
/’ 

__ _ 

a 

Fig. 2 A finite automaton for the Fibonacci wo;ds FR. 
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Let S be totally ordered, S = {s,, . . . , sk},, and let M be the k x k matrix M = (ad) 

where ati is the formal sum of letters x E X such that ~(s,, . ..) = s,. Let Llj be the 
ianguage accepted with initial state s = s, and final state sj. Then the (commutative) 

generating function cy( L,,) of Z[[x]] is equal to the (i,j)-cc&icient of the matrix 

( ‘g - kf ) __ I. Thus the calculus is reduced to determinant calculus. Note that a nice 
ertpression for the determinant det( 1 - M) is given by 

(13) det(l-M)= c (-l)‘u(rl)~Ug~(~I), 
YI..**.Yr 

where yI, . . . , yr are two by two disjoint cycles of S (not necessarily covering all 
the vertices of S), the edges of the cycle are edges of a labeled graph representing 
the automaton, and the valuation U( ri) is the product of the lettt-rs labeling the 

edges of y,. 
An analogous expression exists for the (i&-cofactor. This gives an easier way 

to obtain the generating function (x( LJ (see Figs. 2 and 12). 
An important notion in algebraic language theory is the concept of iferutiue pair 

of a word w of an algebraic language L, that is. a factorization of H’ of the form 
MY = Jtiguh such that, for every n 2 1, the word _jYgu”h is in 1.. Various ‘iterative 
lemmas’ are known {see [3,29]). We will use here Boasson’s lemma. Two iterative 
pairs of CV, bt’ =frzl,gl u,h, and ~7 =f,u,g,c,k, are said to be ouerluppi~tg if one can 
write MY = cyrr,@.+ yv, &I’F or ~2’ = CYU#U, yv&+~. Boasson‘s lemma [4] says that no 
word of an algebraic language has overlapping iterative pairs. 

We show that this lemma implies that there is no hope to encode a convex 
polyomino B with word of an algebraic language L by just follo\hing the border of P. 

For example, one can choose :t canonical point and encode P by a word with 
four letters, obtained by following the border (clockwise, for example) and writing 
the letter corresponding to one of the four possible elementary steps North, South, 
East or West. It would be possible to characterize words correcponding to convex 
polyominoes. Another possible coding would be with three letters, corresponding 
to elementary steps: turn right, turn left or go ahead. 

It is easy to see that an iterative pair of \V C. L corresponds to detine two portions 

of the border of P, located between the points O, p and y, 8, such that (CU. & y, 6) 
is a parallelogram and with some conditions between the firsr and last steP of the 

portion of paths going from CY to p and y to (5 (see Fig. 3 1. Overlapping iterative 
pairs are easily found, and thus the language L. is not algebrkc. 

3* Stacks and parallelogranl polyominocs 

Ttw fundamental idea for the encoding ot ;i con\‘sx pulyomino P is to split it 

into thrIee simpler pol~,omit;oes. This trisection NX introduced by Kixner and 

Kit cl;t [ 2 I ) and is defined ;IS follows. 



P 
/ 
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/ J 
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/ 

i 

i/ 6” #’ 

_ 

Fig. 3. Iterative pairs. 
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3otations. Let P be a convex polyomino and Rect( P) be the smallest rectangie 

(considered as a convex polyomino) containing P The polyomino P touches the 
border of Rect(PJ along four connected segments. Each of these segments has two 
extreme points and thus we introduce 8 points, as sho%wn in Fig. 4. The Westmost 
(respectively Fastmost) of the points of p on the segment composing the South 
(respectively North) bordsr of Rect( P) is denoted by S(P) (respectively N( P)). 

N’ . N 

Fig. 4. Trisection of a convex polyomino. 
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Following counterclockwise the border of P, one meets successively the above 8 
canonical points in the order: S(P), S’(P), E(P), E’(P), N(P), N’(P), W(P), 
W’(P). 

Note that solme of these points can be identical, th;;t is, possibly S’ = E, E’ = N, 
N’= W or W’=S. 

We can now define two important subclasses of convex polyominoes. A 
parallelogram polyomino is a convex polyomino P such that S(P) = W’(P) and 
N (P’> = E’( P) (see Fig. 6). A stack polyomino is a convex polyomino such that 
S(P) = W’(P) and S’(P) = E(P) (see Fig. 7). 

In other words, a parallelogram polyomino is a polyomino such that the intersec- 
tion with every line perpendicular to the main diagonal is a connected segmert. It 
can also be characterized with the border formed with two paths, having only East 
and ?lorth elementary steps, having the same initial and final points, and bezing 
disjoint except at the extreme points. 

For any convex polyomino P, let ds (respectively dN ) be the vertical line passing 
by the points S (respectively N). These two lines split the polyomino P into three 
(possibly empty) parts. The part between & and & is a parallelogram polyomino 
(or the symmetric, up to a vertical axis, of a parallelogram polyomino). The two 
extreme parts are, up to 90” rotation, stack polyominoes (see Fig. 4). 

In fact, three cases have to be considered according to the Cact that .IV is at the 
right of & (type 1 polyomino), or & == & (type 11 polyomino), or J.% is at the 
left of & (type I I1 polyomino) ( see Fig. 5). Note that the symmetric, up to a vertical 
axis, of ti type II? polyomino, is a (special case of1 type I polyomino. 

N 

-P 

I r, - 
s 
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Table 1. Number of convex polyominoes with perimeter 2n. 

Perimeter 2n 
- 

4 

6 
8 

IO 
12 
I4 

16 
18 
20 
22 
24 
_p._ --- - - 

Type I 

I 

2 
7 

27 
110 
460 

I948 
8296 

35400 
151056 
643892 

Type II 

I 
9 

55 
286 

1362 
6143 

26729 
113471 

-- 

Type 111 

1 
13 

110 
758 

4617 
25895 

136949 

Total P?,, 

1 

2 
7 

28 
120 
528 

2344 
10416 
46160 

203680 
8943 12 

For parallelogram polyominoes. the result and the bijection with Dyck words is 
now classical (see Polya [30], Gessel and Viennot [ 131 or Shapiro and Zeilberger 
[S6]). We recall here this bijection. 

Let P be a parallelogram ilolyomino with perimeter 2n + 2 3 4. Such a polyomino 
is defined by two paths o and T of length n + 1 starting at S(P) and ending at 
IV{ P). The TWO paths do not intersect, except at the endpoints. We suppose that CO 
is above (North) path r). To fix the ideas (and the polyomino P), suppose S(P) = 
(0,O). For i 2 0, let di be the line with equation y = --x + i. For any i, 1 s i G ti - I, 
we look for the kind (North or East) of the elementary steps mi (respectively vi) 
of the path o (respectively q), and delimited by the two lines Ai and A,,,. We thus 
define a word \tq = HJ~ . . . w,_, of length n - 1 of (x, X, b, r}* by the following condition, 

M’, = s if o, is a North step and vi an East step, 

M’, = .f if oi is an East step and v, a North step, 
(14) 

\v, = h if 0; is a North step and vi a North step, 

M’I = r if cc), is an East step and vi an East step. 

The word #* satisfies condition (1) because the two paths o and q are not 
intersecting, and condition (2) because the two paths end at the same point. Thus, 
1~ is a 2-colored Motzkin word (Example 2.2). Obviously, the map P-, w is a 
bijection between parallelogram bolyominoes with perimeter 2n + 2 and 2-colored 
Motzkin words of length n - 1. 

Now i’or such a word w = \vl . . . M’,,_. I we define the word u = xh( q) . . . h( w,. 1 )x7 

where h is the morphism (x, X, !I, r} * 3 {x, Z}* defined by the condition 

(IS) h(x)=xx, h(X) = X2, h( 6) = x3, h(r) = fx. 

It is easily shown that the map w + u = xh(w)R is a bijection between 

Motzkin words of length n - 1 and Dyck words of length 2n. We deduce the 
lemma. 

, 
2colored 
following 
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bmma 3.1. The number of parallelogram poIfyominoes with perimeter 2n + 2 is the 
Catalan rlumber C, = [l/(n + l)](T). 

The map P -+ v = y(P) defined above by conditions ( 14) and ( IS) is a bijeztion. 

An example is displayed in Fig. 6. 

w= x bxbxrxxb;i 

t(P) = x xx xx xx xx ‘xx xx xx ‘;, xx ‘;-, ‘( 

Fig.. 6. The (classical) bijection y between parallelogram polyominoes an-i Dyck words. 

Now let P be a stack polyomino with perimeter 2n + 4. The border of such a 
polyomino is made with two non-intersecting (except at the e:dpoints) paths o and 
q. Path 7 is a path going from S(P) to S’(P) = E(P) anti composed only with p 
East steps. Path o is above 7, goes from S(P) to E(P) and is made with p East 
steps, n --p + 2 North steps and n -p -t- 2 South steps. In this path, the North steps 
occur before the South steps,, and the first (respectMy last) step is always a North 
(respectively South) !;tep. We define word M’ of le:lgth 2n +4 of {a, s)* by following 
path w from S( P) to E(P) and writing the lclcter ?I” (respectively the factor xx) 
each time one meets a North or South step (respectively an East step). We obtain 
a word characterized by the three follctiing conditions: 

(16) w E {CI, _x.x}* c {a, x}“, 

( 17) the first (respectively last) letter of M’ is “Q”, 
t Its) IH’I~, is an even number, say 2p and after the pth 

_Ix. 
letter ?I” there is a factor 
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If we delete the first and last letter of w, and a factor xx (which always exists) between 
the pth and (p+ 1)st u’s, we obtain a word t, = G(P) of even length 212. 

Obviously, the map P -+ u = @J(P) is a bijection between stack polyominoes with 
perimeter 2n +4 and words of length 2n satisfying (16) having an even number of 
‘VP, that is nothing but what we have called Fibonacci words in Example 2.3. An 
example of the bijection al, is given in Fig. 7. 

/- 
/ --4 

. . / 
--#)---- 

Olp) z axxxxaxxaaaaxxxx 

Fig. 7. The bijection @ between stack polyominoes and Fibonacci words. 

From Example 2.3 and equation ( lo), we deduce the following lemma. 

Lemma 3.2. The number of stack polyominoes with perimeter 2n + 4 is the Fibonaeci 

number Fz, with generating function 

C FzntZn = 
l-t2 

n SO (1 - t - t2)( 1 + t - t2)’ 

Thus each part of the trisection of a convex polyomino can be encoded by a word 
of an algebraic (or rational) language. The idea is to mix the three codings in a 
single one. The major problem is to define a ‘gluing’ process, keeping the algebraic 
as well* as the convex property. Unfortunately, with the above coding y between 
parallelogram polyominoes and Dyck words, this ‘gluing’ process would lead tG 
non-algebraic languages. It would be possible to ‘insert’ the coding with Fibonacci 
words into 2-colored Motzkin words, but it seems impossible to obtam words of an 
algebraic language having a tractable associated algebraic system of equations. 

We are going to give a more elaborate bijection between parallelogram poly- 
ominoes and Dyck words, which will fit very well with our ‘gluing’ problem. , 
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4. The bijection p between Dyck words and parallelogram polyominoes 

Let w be ;d Dyck word of length 2n. A factor xx (respectively 3x) is called a peak 

(respectively trough) of w. We number the peaks (respectively trough) from left. to 
right. Let k 2 1 be the number of peaks of w (thus w has k - 1 troughs). The heighf 
of the peak w =fixg is defined by 1 + S(f) with S the functi& 

( 19) W) = lflx - I.&~ 

The height of the trough w =fixg is defined>as S(S). 
To w, we associate two sequences a(w) = (a,, . . . , aA) and b(w) = (b,, . . . , hk._ ,) 

by the condition 
(20) for i, I s i ~3 k (respectively 1 s i s k - l), the number Ui (respectively h,) is 

the height of the ith peak (respectively trough). 
Obviously, these two sequences satisfy the following condition, 

(21) forany i, &Sk-l, lSb;cai and ldbisQ,+l. ‘i 

For any i, 1 s i G k, we consider a vertical strip of i cells. Inside each strip, the 
cells are ordered down-up. Now we ‘glue’ these strips together according to the 
sequence b( w). More precisely, for i, 1 s i I=, k, - 1, the (i + 1 )st strip is ‘glued’ on 
the right of the ith strip such that the first bi cells of the (i + 1 )st strip are ‘glued’ 
to the last hi cells of the ith strip ( YX Fig. 81. Formally these two strips form a 

w r xxxxxxxx i i X x ii x x i x x 

F-ig 8. The bijection ,3 between Dyck words and parsllelogram polyominoes. 



Algebraic languages and pol_vominoes enumeration 183 

parallelogram polyomino Pi such that the p,ath m( Pi) (respectively T( P,)) defined 
in Section 3 has the following sequence of elementary steps: North ai times, East, 

North (aiT - bi) times, East (respectively East, North (ai - bi) times, East, North 
a,_ l times). 

We thus obtain a parallelogram polyomino P denoted by P = p( w). 
The perimeter p is given by 

(22) p= i (2+2aj_b,-bi_*) 
, =I 

with the convention 6O = 6k = 0. 

The sum (22) is easi!y seen to be equal to the length of the DJ ck word w, increased 
by 2. 

We now describe a map ~1 which will t=e the reverse bijec&,n of p. 
Let P be a paralleic&ram polyomino with perimeter 2n + 2. Let k be the number 

of East szeps of the paths o(P) and q(P) defined in Section 3. The polyom’?;lo P 
is formed with k vertical strips, which we number from left to right. We define two 

sequences of integers a(P) := (a,, . . . , tzk) and b(P) = (h,, . . . , bk+) such that ai is 
the number of cells of the &h strip, and bi is the length of the segment common to 
the border of r!x ith and (i + 1)st strips. 

Obviously, such sequences satisfy reMions (A) and (22) (withp = 2n +2). Making 
the convention b,, = 6, = 0, we define the word w = tiluI . . . ukuk by the relation 

(23) for 1 s is k, 14 = $1 + u, - h, ,I and u,. = _f(‘+“t -‘t). 

It is easy to check that w is a Dyck word. From relatic,il (22), the length of w is 

211. r)enote by /J (P l= w the Dyck word thus obtained. 

It is easy to see that maps /3 and p are the inverses of each other. We thus have 

the followiflg proposition. 

Proposition 4.1. The map p defined above is a bijection from Dyck words qf length 
2n onto paiwllelogram polyominoes of perimeter 2n f 2. The area qf’ P is the sum. of 
tlw height of the peaks qf/3( P). 

Remark 4.2. For a parallelogram polyomino f, define !( Pj (respectively r(P)) as 

to be the distance between the two poin:i (defined in Section 3) W(P) and W’(P) 
(respectively k ( P) and E’(P )). For a Dyck word w, let r(P) (respectively r(P)> be 
the maximum length of a left rrespectivcly right) factor of w equal to ‘a power of 

.x (respectively X). We have proved that the double distribution (l, r) for 

parallelogram po!yominoes with perimeter 2n + 2 is the same as the double distribu- 

tion ( I, r) for Dyck words with length 2n. 

Remark 4.3. Using the cl assical ‘Andre‘s reflehion principle’, it can be proved that 

the number a,,.,, , of Dyck words u’ of length 2n such that I(w) = i and r(w) =j 
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(defined in Remark 4.2) is given by 

(24) a,,i,j = (2nn;_>I--$2) - (2n;F{-2), 

with the convention (g) = 0 when b > a. 

Remark 4.4. Define the width of a parallelogram polyomino to be the number of 
vertical strips composing this polyomino. Applying Gessel and Viennot’s [ 13) 
methodology interpretating determinants as noncrossing paths, it is easy to prove 
that the number bn,k of parallelogram polyominoes with perimeter 2n + 2 and width 
k is given by the 2 ~2 determinant 

(3 (“3 
(25) bn,k= ( ; ) (r~) * 

k I h 

This determinant is equal to ( l/ n)( z)( k)l l) and using Proposition 4. I, we deduce 
the well-known formula for the number of Dyck words of length 2n having k peaks 
(see, for example, Kreweras [22]). 

Remark 4.5. it is interesting to note that the bijection /3 cz;n be defined in a completely 
different way, using binary trees and some new combinatorial properties relating 
‘prefix order’, ‘symmetric order’ and ‘height’ of vertices. We suppose here that the 
reader is familiar with this terminology for binary trees 
other version of /3. For more details and combinatorial 
referred to Viennot [41]. 

and briefly describe the 
properties, the reader is 

Let U’ = M?, . . - U’z,, be a Dyck word of length 211. First we define the Dyck word 
* w = WZn... I+, where I+, is x (respectively 3) if Wi is 3 (respectively s). It is very 

classical to associate to the Dyck word G a complete binary tree B (with 2n + I 

vertices) using the prefix order (here the left subtree is traversed after the right 
subtree). Then deleting the leaves of B, we obtain a binary tree h (with #I vertices) 
which we order according to the symmetric order (called also inorder) (see Fig. 9). 
Now we define a path OJ of length II- I such that, for I 6 i d II - I, the ith elementary 
step is North (respectively East) if the ith vertex of h has (respectively does not 
have) a right son. The number of East steps is thus the number of left edges of the 
binary tree h. Under the jth East step of w we put a horizontal edge such that the 
distance between these two edges is equal to the right height 0:’ the _ith vertex of b 
having a left son. It is a e:omhinatorinl property of binary trees that these horizontal 
edges are East steps of a (unique) path v having only East and North steps and 
sane endpoints as CO. Sliding 45” downwards path q gives a path 17’. and adding 
two ‘corners’ we obtain d parallelogram polyomino P (see Fig. 9). 

It can be proved that this map MI -+ P is a bijection, identicil! to /3. The reverse 
map can also be described, using the analogue, for binary trees, of Schtitzenberger‘s 

‘jw de trtquin’ for Yowlg tableaux (see Viennot [Jl I). 
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Fig. 9. The bijection /3 with binary trees. 

5. The coding of type I polyominoes 

‘A?:! combine the bijection Qi \between stack polyominoes and Fibonacci words) 
with the bijection p (between parallelogram pnlyominoes and Dyck words) in order 
to give a bijection between type I (convex) polyominoes and some words of an 
alg cbraic language. 
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A pigmented Llyck word is a word w of {x, 3, a}* satisfying the three following 
conditions: 

(26a j the word d,.,(w) obtained by deleting the a’s from w is a Dyck word,‘ 
(26b) w can be factorized in the form w = w, wZw3 with w, E ~{a, x)*x or wl = e, 

w2 Er {x, a}*, w3 E jz{a, f)*X or w3 = e, 
(26~) the above factorization is such that lw&, and (w& are even. 

Example 5.1. w = xaaxaaxx~~_~j~x.~~~a~aaaa~ is a pigmented Dyck word of 
length 28. 

If u is a Dyck word, define the left leg (respectively right leg) to be the longest 
left ( respcctil:ely right) factor of u in {x}* (respectively {X}*). Conditions (26a)-( 26c) 
say that a pigmented Dyck word is a Motzkin word obtained from a Dyck word by 
inserting an even number of letters “a” (the ‘pigment’) between the first and last 
letter of the left leg (respectively right leg). 

Proposition 5.2. There exists a bijection between type 1 c0rue.x poljyominoes ka~‘ing 
perimeter 2 n + 2 and pigmented D~vk words (dqjined by (26)) of length 2n. 

Proof. Let w be a pigmented Dyck word. Let p (respectively q) be the length of 
the left, (respectively right) leg of the Dyck word dJ w). 

First, using the bijection p defined in Section 4, we construct the parallelogram 
polyolmino P = /3( d,,( w) 1. The distance between the two points S( PI = W’( P) and 
W(f) (respectively E(P) and E’(P) = N( P)) is p (respectively q). 

Now we ‘glue’ two stack polyominoes on each side of P in the following way. 
Let uyl I respectively ~7~) be the longest left (respectively right) factor of 1~ such 

that M’, c {N, .u)* (respectively +E {cl, .i’)*). If Iqj~, = 0 (respectively Iw*_:j,, = O), there 
is nothing to ‘glue’ on the left-hand (respectively right-hand) side of I? 

Suppose IH’,~~ z 0. We can write q = sq ul_x with III,I~~ = IP,I,~ = c Let N$ be tht 
word of length p-1. 2r, M!; = xu,xt., = zI . . . z,, +2r with z, E {a, s). We construct a path 
wI of length ~f2~ going from S(P) to u/( P) and such that the ith step is North 
if z, = x and is East or West if Z, = (1. For the first r U’S of \t*i, we choose an East 
statp, while for the last r a’s of M$, we choose a We:,t stc’p. We have glued a stack 
polyomino on the lme joining SC P) and W(P) (see Fig. 10 where the construction 
ii* displayed for the pigmented Dyck word of Example S.I ). 

Dually, if /H& =L 9 A- $0, we construct a path (L).{ of length q + 2s going from N( f) 
to EA PI. Here “.Y” corresponds to a South step, whi!e the first .q CI’S to an East step 
3nd the last s U*S to West step. 

1%‘~ thus obtain ;‘ _~ncrex polyomino Q = P,( N*). The border of this pol>*omino is 
made of the two paths wI and (L) 3, the part of the upper border of f Iying between 
N’( P) and IW P), and the part of the lower border of f tying between St f) and E( f ). 

It is easily seen &at S(Q) = S( f 1 and N(Q) = :V( f 1. The polyomino Q is of type 
I, with perimeter 2rz + 2. From the f‘;tct that p is ii bijection, it is easy to deduce that 
‘I’! i5 ;i biiection. I*_! 
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Fig. 10. J’he bijection P,. 

The reader familiar with algebraic languages the&y will easily construct a ‘push- 
down automaton’ accepting the set of pigmented Dyck words. Thus this language 
is algebraic (see next section). 

6. The generating function for type I polyominoes 

In this section we introduce auxiliary languages and give the generating function 
(in one variable) for the pigmented Dyck language. 

Notations. We denote by Y the alphabet {x, 2, J, jj} and by ,u the morphism Y* + 
{x, a)* defined by its action on the letters of Y*: 

(27) gW=p(y)=x and P(a)=P(~)=,~. 
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Let H be the st:t of words w of I”* satisfying the following two conditions: 
(28) p(w) is a Dyck word of {x, Z)*, 
(29 j w has one of the following forms: w = _ykyk, k 2 I, or w = UZW’XV with u E {y}*, 

v E {p}* and w’E {x, 3}*. 
In other words, a word w of H is obtained from a Dyck word w” of {x, 3}* by 

changing each letter x (respectively X) of the left (respectively right) leg of w” into 
y (respectively J). 

Let L be the set of words of Y* satisfying condition (28) and 

(29a) w=e or w= U~W’ with u E {y}* and W’E {x, $}*. 

Let R be the set of words of Y* satisfying condition (28) and 

(29b) w=e or w= w’xv with v E {y}* and W’E {x, j;I}*. 

The noncommutative generating function H E Z(( Y)) of the auxiliary language H 
satisfies the following algebraic system of equations: 

H = y.F + yH9 + _yLZDxRJ, 

(30) 
L= 1 +yL%D, 

R=l+DxRy, 

D=l+xDzD. 

The first equation is just a translation of the following fact. For every word ~Z’E H, 
let p(wj=u, . . . uk be the unique factorization of the Dyck word M‘ into prime 
words w, (Dyck words which are not product of other Dyck words). Then if k = 1, 
w has the form w = ylrJ with either u = e, or u E H. If k # 1, then w has a unique 
factorization w = pv,_~~‘xw~~ with MT, E L, W’E D, w,, E R (and in fact ~(ywJ) = 11~ 

and ~(XH’/JJ) = Ilk). 
The second and third equations come from analogous properties for the languages 

L and R. 
Let 2 be the alphabet {x, 2, y, “F, a, h). We define the two substitution operators 

h and p sending every word w E Y* into a set of words of Z*. The words of A(w) 
(respectively p( w)) are the words obtained from w by changing any letter y (respec- 
tively ,t’) into the factor a’x (respectively ?b’) with i 3 0. In language theory, h and 
p are very simple examples of a so-called rational transduction. 

Let S c {x, S, a, b)” be the language defined by 
(3 1 1 w E S iff there exists II, c E Z* such that y1?\7 c t{, ~1 c ,\ (,I( 14 )), M- = .yl).\l. 

Let VC S the set of words M’E S such that 
32) 1 WI, and lwlr, are even. 
The reader can easily prove the following lemma. 
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Remark 6.2 (for ‘language theorists’). The pigmented Dyck is algebraic because V 
is obtained from the Dyck language D using the operations rational transduction 
and intersection with a rational language. 

Notations. We introduce the following generating functions in commutative vari- 
ables x, & ~1, y, a, b: 

h(x, 2, y, 9) = a(H), 1(x, % y, .a = 40, 

t-(x, 3, _v. jq = a(R), s(x, g, a, 6) = a(S), 

~(x,X,u,b)=a(R) and ~(.x,~)=cY(II)= 
1 -( 1 -4x..V)“2 

2xX * 

From Proposition 5.2 alld Lemma 6.1, the (ordinary) generating function 

c,, -_, pln+2t20 for the number p’ In+Z of type I polyominoes with perimeter 2n + 2 is 

the formal series obtained by sending all variables on t, that is, 

The substitut%ns A .Indq defined on the family of languages of Z* have analogues 
in the set of fo_xral series. 

We define the morphisms (of commutative algebra) h and p : H[[ Y]]+ Z[[Z]] by 
the conditions 

(34a) h(y) =A9 A(z) = z for z E Y, 2 f .& - 

(34b) j?(.r’) = A9 P(z) = z for z E Y, z # J?. - 

The reader will easily prove that relation (3 1) can be extended to power series 
in the following way: 

(35) S(S,~,u,b)=(l-n)(l-h)h .x,x,f-& . ( - - ) 
In order to obtain the analogue, for power series, of relation (32), it sufices to 

take according to the variable “a” the even part of the pawer series S, and then 
take again. xcording to the variable 6, the even part of the result. Thus 

(36) r(s, _f, a, h) = :(s(x, k, a, h)+ S( x, x, -II, h)+ S(X, x, a, -h) 

+ s( x, 2, -a, --II)). 

Noting that s is symmetric in a and b, we iF!uce, from (33), 

(37) Pi(Il-=:f~(s(f, f, f, r)+2S(?, t, 1, ’ ‘4’, ‘, -‘,-‘))’ 
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The generating functions a (x, 3, y, jj), 1 (x, jz, y, p) and r( x, 2, y, 7) satisfy a commu- 
tative analogue of the algebraic system (30), which can be solved by linear equations: 

(38) I= I 
I 

f - dzy’ ‘= 1 -m&j 

(39) h(x, 2, y, yc) =FyF (1 +xzdlr). - 

An explicit expression for p,(t) can be obtained from relations (35), (37), (38) 
and (39). 

In order to simplify the calculus we denote 

1-A l+A 
AW4-41*)“*, c(t)=-g-=d(t, t) and I’=- 2t” = 

We have 

(40) cc’= CS-E=-1Z; and c*t*= c- 1. 
t 

From (38) and (39) we deduce 

Using (35) we have 

(42) 
t’(l -a)( 1 - b) 

( 

1’(! --a)(1 --h)c -_ 
s(r, f@J)=(l -a-b+ab-t*) l+(l--o_f$(l __b_f’c) > ’ 

(43) 
t’( I. 

s(t, f, t, t) =- 
- r)*( 1 - 2t + PC) 

(1 -2#( 1 - t2C) ’ 

Multiplying numerator and denominator by (I - t’E) gives 

(44) s( 1, 1, t, t) = 
(1 -f)‘(l--2fff’-26(1 +)‘A) 

241 --2r)’ 
. 

Similarly we compute success; vely 

(45) 
f’(1 - r!(l+ t) 

s ( t, 2, 2, - f ) = - 
(I-2f?) ‘+ C 

tZ( I - tqc -- 
(1 + t - A)( 1 - r - r’c) > ’ 

- (46) 
s(r, 

1 - 2f’- 
2, t, 

-3) r2( 1 tQ( PC) = 

( 1 -2r2)( I - 2rz - Cc). 

Multiplying numerator and denominator by (1 -2t’- r’)T) gives 

i47) s( t, f, i, 
_f)_(l -ml -2f)( I +2r)( 1 -3rq --(I - f’)( I -2fU) 

- ------ 
2( I -2t-7)(2f --I)(lf + 1) 

. 
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Also from (42) we have 

(48) s(t, 1, -1, -I) = 
r2( 1+ 2‘)’ t’( 1 + f)2c 

(1+2r) *+(l+t-t%) 

(49) s( t, t, -1, -I) = 
I’( 1+ tJ2( 1+2t + t4c) 

(1+2r)*( 1 - t’c) l 

Multiplying numerator and denominator by 1 - t2C gives similarly 

(50) s( t, t, -t, -t) == 
(l+t)‘((l+2t+;2-2t4-(l+t)‘A) 

2( 1 +2t)2 
. 

?Jow using (.17), and adding (44), (47) and (SO) we obtain (using MACSYMA) 
the following generating function for type I polyominoes. 

Theorem 6.3. 7314 ger?crating~~rnction.f~t the nttndwr p& of type I polJominoes hauing 

perimeter 2n is 

1 p,!“t?” = 
tJ( 1 -8t’+2l t4- 19t”+4t”) 

II -;! 
(1 _2t)z(I +2$(, _2t’) -2t”u -4tFZ. 

7. The cading bf type II polyominoes 

Type 11 polyominoes (i.e., rolyominoes P such that S(P) and N(P’) are on the 

same vertical line) are obtained by ‘gluing’ together two stack polyominoes, as 

shown in Fig. I I + In this section we construct a bijection PII bei .;een type II 

polyominoes having perimeter 2n + 8 and a certain set B of pairs (II, u) of words, 

with total length luI+ Iv1 = 2n. The construction for !P,, is a more elaborate version 

of the construction for @ introduced in Section 3, and related to Fibonacci numbers. 
Dyck language is not involved here and the final generating function P,,(Z) is rational. 

Let B be the set of all pairs of words u, u E {x, z, a}’ sa isfying the three following 

conditions: 

(5 I a) u and u E (a, z}* l {a, _r~)‘~, 

(S I b) Il(I, ” It& f 0, 

(S 1 c) jul,, and Icj, are even numbers. 

Remark 7.1. For (rc, L’)E B, lul+ltll is even (= 2n) and such a pair is in hijection 

with the word rr/ tl (of length 3~1 + I ) of a certain language B C--I {x, z. a, /}“. Language 

theorists will easily see that B is a ‘hear’ language, and thus algebraic. 

Proposition 7.2. There exists a hijedon between type If polyomrnoes with perimeter 

2n+8 and pairs (u, t’)~ B (&find hy (51)) with lul+lc!=2n. 
l 

Proof. Let P be a type II pal!-or?lino with perimeter 2n + 8. Let A be the vertical 
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0’ 
. . . . . 

Y (P):(zaararrxxa,zzarzxxaaxxa) 
u 

Fig. I I. The hijection P,,. 

line where S( P) and N(P) are located. The border of P intersects along two disjoints 
segments. Let M c= M( P) (respectively M’ = M’( I’)) be the upper (respectively 

lower) extreme point of the segment having S(P) (respectively N(P)) as other 
extreme point. Let D (respectively I>‘) be the horizontal line containing the point 
M (respectively M’). Starting from .M and following clockwise the border of P, we 
successively meet the following paths: 
- wz from M to W having West and North steps, 
- 71~ from W to N having East and North steps, 
- & from N to M’ having only South steps, 
- OJ-, from M’ to E having East and South steps, 
- + from E to S having West and South steps, 
- & from S to A4 hnvirlg only North steps. 
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Remark 7.3. Note that the first (respectively last) step of o1 is necessarily West 
(respectively North). The first (respectively last) step of o2 is West (respectiqlely 
South). Also the last step of ql (respectively q2) is East (respectively West) and 5, 
and e2 are nonempty. 

Proof of Proposition 7.2 (continued). Let Ts (respectively TN) be the ‘South transla- 
tion’ (x, y ) + (x, y - 1) (respectively ‘North translation’ (x, y 1+ (x, y + 1)). We define 
w = T’( W). fi = Ts( IV), E = TN( E) and s = TN(S). The step ( W, l$‘) (respectively 

( E, E )) is the last step of the path o1 (respectively 02). Let o i (respectively w;) be 

the path obtained from ol (ret 3ectively 02) by deleting this last step. The step 

( N, fi) (respectively (S, s)) is the first step of the path 6, (respectively t2). Let 5; 

(respectively 55) be the path obtained by deleting this first step. 
We define q, = Ts(qI) (path going from u” to N) and ii2 = TN( v2) (path going 

from E to S). 
From Remark 7.3, the polyomino P can be reconstructed from the six paths CO;, 

05, 51.. & ii,, $. The total length of these paths is 2n +4. 

We define the word u’ by following (from A4 to fi via w) first the path Al,, and 

then the path q,, and by writing a letter “a” (respectively “z”, a factor xx) each 

time WC ir,~k: an Easi or West step (respectively a North step located between the 

two lines D and D’, a North step shove the line D’). 
Qually, we define the word u’ by following (from M’ to ?? via I!?) first the path 

~5. and then the path 1j2, and by writing a letter “a” (respectively “z”, a factor xx) 

each time we make an East or West step (respectively a South step located between 
the two lines D and D’, a South step below the line D). 

Ex~mpie. For the polyomino P (with perimeter 30) displayed in Fig. 11, we have 

U% azaazazzxxaa and v’ = azzazzxxaaxxaa. 

Obviously (cf. Remark 7.3) the first and last letter of u’ f respectively u’) is “a”. 
We define u (respectively U) to be the word obtained by d4eting these two letters, 

and finally 
, 

(S2) Pl,( PI = (u, u). 

It is easy to verify that lu[+ IuI= 2rz and that (u, u) satisfies the three conditions 

(%a)-(SIC) defining the set B. 

ConverwIy, Iet (u, tl) be a pair of B with luI+ [ul= 2n. We define U’ = Qua and 
I y =1 ar?a. The number of “x” in U’ is an even number, $ay 2r (2 0). Also denote 

il P L” (1 -2 2 3 2. Let u” be the word obtained from u’ by replacing each factor XX by 

“x” and by inserting an “x” just after the pth letter “a”. Also let 2s = II& 2 0, 

29 = Iv’ln 2 2 and t”’ be the word obtained in a similar way. Let m = I& = I$. We 

define the four points S = (0, -(s + l)), M = (O,O), M’= (0, m), N = (0, m + r-t- 1). 

These four points are all distinct. 

Reading from left to right the word ZP (respectively u”) and similarly to the process 

defining @ -’ in Section 3, we construct a path xl (respectively x2) going from M 
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to N (respectively 121’ to 3). Each letter “x” or “z” corresponds to a North 
(respectively South j step. The first p (respectively q) letters “Q” correspond to a 

West (respectively East) step. The last p (respectively q) letters “a” correspond to 
an East (respectively West) step. 

Now we respectively define & &) to be the path going from IV to M' (S to M ). 
The path 5, (&) has r+ 1 (s + 1) South (North) steps. 

It is easy to verify that the four paths &, &, xl, x2 define the border of a type II 
polyomino P with perimeter 2n + 8. Also, the reader will verify that the two cotre- 
spondences defined above are inverse each other. Cl 

8. The generating frlnction for type II polyominoes 

The language B defined in Remark 7. I and coding type II polyominoes is algebraic 
but l!ot rational. It would be possible to give a length preserving bijection between 
words of B and words of a rational language, using a rmlti-head automaton. 

These kinds of automaton are well known in theoretical computer science (see, 
for example, [27, 32, 431). A word :V = u/u of B can be recognized by a two-head 
finite automaton in the following sense. At the beginning, the heads are pointing 
at the first letter of rd and 1’. The automaton begins to read u. Each time one of the 
heads reads a letter z, the automaton will read the next letter with the other head. 
Each head moves to the right. When the word recaL _Ahes the final state, each letter 
has been read once (and only once) by one of the heads. The first head is pointing 
at the symbol “/“, the second is pointing at the last letter ot tl. The computation 
of the generating function for the number of words of I? of length 211+ 1 is thus 
reduced to a determinant calculus. Relation ( I N, and the analogous expression for 
the cofactor, gives an efficient way to compute these determinants. For pedagogical 
purpose, we give in Fig. I2 a M-states two-head automaton accepting B. 

It is perhaps better to apply the same procedure as in Section 6, using substitution 
operators. 

Let K be the set of pairs ( wI, w2) of words of { 14, c, .Y, n, h)* s;:tisfying the conditions 

(537) IH’/,, = !w/,. i 0. 

Taking the corresponding notlcc,mnllrt;\ti\,e generating function and applying the 
morphism U, we can easily write 

.A5 in Section h, we” apply the substitutions defined by 
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initial 

state 

/ . . / 
@ . 

c 0 
. . 

road u 
# / 

2 0 
. 2 

c 
. 

2 In ul 

read v _ 

195 

a 

f lnaf 

State 

. . 

IlJ odd IU Ill a a ,a even 
‘Y 

,“a a 
even iVI a odd pVla 

Fig. 12. The finite two-head automaton for type II polyominoes. 

odd 

odd 

Let k( u, ~7, x, a, h) be the generating function (54) and b( z, x, a, b) be the generatkg 
function defined by 

As in Section 6, we obviously have 

(S7) h(1, t, 1, f)=:(r(I, 1, t)+2r(1, -1, t)+lQ, -1, -O), 

where I+( x, u, b) is defined by 

(58) r(x,a,b)=k e,f$a,b 
- - 

From (55) and (58) we first compute 

(59) r( .I-, a, b ) = 
x2 -- 

((1 --~2)(1--hj-_~~j(l-424)(1 -b-.Cj 
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We hal.e successively 

t 
i 

t60) f-09 4 t)=(l _Zt)(l _t_t2)2) 

I 

t2 
(61) r(t, -t, t)= 

(1 -2t2)( 1 - t - t2)( 1+ t - tq 

(62) rC4 -t, -4 =clrz;rr:; f _ t2)” 

Combining (60), (61), (62) and using (57) and Proposition 7.2, we deduce the 
following theorem. 

Theorem 8.1. The generating jirnction p,,(t) *for the number pi\ of type II cotavex 
polyomrnoes with perimeter 2n is 

(62) x pyy” = 
I’“( 1 -3t’+2t4+ P) --- 

I’ -5 (I -2t)( i +a)( I -2r)( 1 + t - t2)-)( I -t - ty 

9. The coding for type III polyominoes 

The coding for type III polyominoes is a sort of combination of the coding for 
type I (Section 5) and for type II (Section 7). The coding of the middle part of the 
trisection (parallelogram poiyomino) is exactly the same as for type 1. The coding 

ot’ the stack poiyominoes is analogous to the construction given in Section 7 (a 
letter “a” encodes a West or East step, a letter ‘Y or a factor xx encodes a North 
or South sjcp). 

Nevertheies::, we need to introduce some slight modifications in the mixing of 
the three words coding each part of the trisectian, in order to obtain tractable 
algebraic systems. Also we choose a coding such that large parts of the computations 

for type 1 can be used again for type 111. 
Let Q be a type 1 I I poiyotnino with perimeter 2n + 2, i.e. the vertical line cl, 

supporting N is at the left-hand side of the vertical line & supporting S. The middle 
part between ilN and & is a r~ever.separall~~k~grar~r po!\*ornino P, that IS, the symmetric, 
up to it vertical line, of a paraiieic~grat~~ poiyomino P, Denote by I I, I’) (respectively 
t -1, .I’)) the segment P I~ Js (respectively P n AM ). Also we suppose I is below I’ 
(respectively .I above .I’). The two stacks poiyominoes of the trisection are necessarily 
nonempty. Kespeotivciy denote by Si (9) the right (left) stack poiyomino. Let 
respectively I” (1”) be the intersection of Js (&I with the upper (lower) border 
of Sl (!%I). Th 1 t point I” is between I ;tnd 8’ with I f I”. The point .I” is between .I 
xtd .I’ with J t’l .I”. Also we must have I f S and .I + N (see Fig. 13 L 

Let H’ - p ‘( P) be the Dyck word coding the parallelogram poiyomino .? as 
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W 

__ 

W’ 

Dr _.__ - 

E’ 

E 

ylllf!j) - ddZZddZZ~ZZxdxxxiiix;;xxx~xxiiibbZZbZZb 

Fig. 13. The bijection V,,,. 

Let D, (respectively D.,, be the horizontal line supporting I (respectively J 1. 
We define the word II by following counterclockwise the border of the stack 

polyomino 9, from S to I” (passing through S’, E and E’). Each time we make a 

horizontal (East or West) step we write a letter “a”. Each time we make a Not-i-h 

step, we write a letter “x” (respectively “z”) if the step is above D, (respectively 

below I), ). 
Analogously, we define ti IZ word t, by following counterclockwise (and writing 

u from right to left) the border of stack polyomino SJ from IV to J”, with “a” for 

an horizontal step, and “k” (respectively “z “) for a South step below (respectively 

above) Q. Necessarily WC have 



198 M-R Dele*;t, G. Viennot 

We define i = lulx (i.e., the distance between I and I”) andj = luln (i.e., the distance 
between J and J”). 

By concatening the words U, w, u and deleting i letters “x” and j letters 7” from 
w, we define the word 

(65) ‘@Q) = uxp-iwt~q-jv. 

The length of this word is 2n --lulz - lolz. 
The reader will easily verify that @ is a bijection between type III polyominoes 

with perimeter 2n + 2 and words w E {x, 2, z, u, b}*, of length 2n - I WI,- and satisfying 
the five following conditions: 

(66a) 

Mb) 

(66c) 

(66& 

the word c&~,J w) obtained by deleting from w the letters Q, 6, z is a 
nonempty Dyck word, 
w has a factorization of the form w = qfghb with JE (a, z}” l (a, x}*, g E 
{X, if)*, h E {b, g)* l {b, i:}*, lflz # 0, l/II-_ # 0, 

lwlo = 2r and lwlh = 2s are nonzero even numbers, 
there exists a letter “x” in w before the last “a” of WY; there exists a letter 
“3’ after the first “6” of tr’, 

(66d between the rth and (r+ I )st 31” of w there exists a letter Y’ or “z”: 
between the sth and (s + 1 )st “b“ of w there exists a letter “.a” or “z”. 

The reader would be enclined to replace in the same way as for type 11 each letter 
CL 7. z by a factor zz in order to have a length preserving bijection. It is better to make 
this substitution after the opera.tions defined below. These operations cancel the 
condition (666) and (66e) and slightly modify (66b). 

The numbers lul,, and lz+, are even numbers. Denote 1~1,~ ,- 2r, jt!l,, = 2s. Let l *_Y’* 
l= x or Z) be the letter of u following the rth “u”. If _V = s, then we denote by II’ 
rhe word obtained by deleting this letter _I- = s and adding a letter ‘Y’ at the end 
of 24. If y = z, we delete this letter 1’ = Z, replace the first letter Y’ in u by ‘Y’ and 
put a letter ‘Y at the end. We define dually L”, by taking the letter “_v” ( = .f or Z) 
just before the (s + 1 )st b (sth from right to left), and doing the analogous operations 
(replacing “first letter X” by “last letter 3’ and “end” by “beginning”). 

Finally, we define the word 

where I)_. is the morphism z -+ 2’ (and leaving other letters invariant ). 

Example. For the polyomino Q displayed in Fig. 13, we h;wr’ successiwly 
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The reader will easily prove the following proposition. 

Proposition 9.1. The map *,,, defined by (67) is a bijection between type Ii : poly- 
ominoes with perimeter 2n + 2 and words w E {x, X, z, a, b)” of length 1 n salkfying 
conditions (66a), (66~) and the following condition : 

(Mb) w has a factorization of the .form w = afxgghb with f E (a, z;.}* - (a, x}*, 
Ifl._ f 0, g E: {x, s}*, h E (69 jz)* 9 (6, zz}*, IhI-_ f 0. 

10. The generating function for type Iii polyominoes 

We use the same kirnd of techniques 3s for types I and II (auxiliary languages 
and substitution operators). Details of the proof (and MACSYMA computations!) 
are omitted. 

We start again with the auxiliary languages H and S of Section 6, defined by the 
relations (28), (29) and (3 1). Their respective -[commutative) generating functions 
h(x, Z,y,,v’) and s(x, 2, a, 6) are given by (41) and (35). We will use the same 
notations of that s;c”tiqn for d (x, x’), c(t), C( r) and A(t). 

Let 3 bt the szt c votds w of (x, .%, a, b}* defined by 

Let G be the (algebraic) language of {?I, 2, y, j, a, b}” defined by 

(69) G=a(a+ v)*$$(h+_Q)*b. I 

After Sections 6 and 8, the nonspecialist reader is now familiar with the 
methodology for translating conditions defining languages like (67), (68) and (69), 
into equations in noncommutative power series. From Proposition 9.1 he (or she) 
will easily prove that the generating function p,,,(t) = &+O p:‘,‘t*” for the number 
pi’,! of type III convex polyominoes is given by the following equations (we have 
denoted by $(x, X, a, b) and g( x, 2, y, 9, a, b) the respective commutative power series 
cu(s) and a(L)): 

(70) p,,,( 1) - :I”(g(t, t,1, f’, I, 1)-+2g(f, t, t2, f’, -1, t)+g(t, t, f2, t’,-t, -t)), 

1 1 
(72) S( x, .t, a, 6) = 

(l-a)(l-b) 
s(x, x, a, b) -- s(x, 2, a, 0) 

1-U 

1 
--s(x,.&O,b)+d(x,z)-1. 

(1 -b) 

The series P&) is computed from equations (35), (41), (70), (71) and (72). 
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Let g,, g2, g3, G,, G2, G3 defined as follows: 

abx” 
(73) g,(x, a, 1% =- 

(l-a)(+b)(l-a-x2)(1-b-x’) 
dx, x, a, b), 

abx” 
(74) g,(x, a, b) = 

(1-a)(l-a-x2)(1-b-x2) 
dx, x, a, Oh 

c7% 
abx”(c(x) - 1) 

gdx9 a3 bb(l _a__x2)(l _b_x2)’ 

(76) Gi(t)=:(gi(t, ty t)+2gi(t,-ty t)+gi(t,-~,-t)) fori=1,2,3. 

From (701, (7 1) and (72) we have 

(77) p,,,(t)= G,(t)-2G,(r)+G,(t). 

Now using (35) and (41), we have successively 

(78) g,(f, f, f)” f”(l -2f+f’ 
--2taq1 - ?)‘A) 

2(1-2$(1 --f-fy ’ 

(79) 
_f f)=1”(--(1-2?)(1+2f)(1-3r~~+(l-f~{l+fH1-2f’)Jr 

sAf. t 
2(1-2f)(1+2f)(l-f-r~)(1+r-f~) -) 

WN g,(t, -t, -1) = 
t”( 1 +2t + II-2P-( 1 + f)‘J) 

2(~-t2fy(l+f-ry ’ 

(81) G,( 1) =. 
f’( 1 -8f’+34f’--94f”+ 126f”--54f’“+8f1~~ 

2( I - 21yj 1 + 2f)‘( 1 -2f’)( I + f - fy( 1 - f - ry 

fX( I -6f’+ 16fl’-24f~+2Of”-8f”~)J 

-2( 1 -21)7 I t-2f)‘(l - 2f2)( 1 + f - ,‘)?( 1 *- f - f_7)’ 

t 
I 0 

(aI) g:(r, 1, f)= 
(1 - I - fy( 1 -- r - 1?+ f”(f - I )d 

Multiplying numerator and denominator by (I -- t - 1-t I’( I - I )d gives us 

f-(-l +f+:!f2+(1 - I)Jj 
csZb) &(f, 1, f) =-- . 

2( I - 21)( I -(__y)J ’ 

f 
IO 

(ml) g2(r, -f, f)------ 
(I - I - f?( I + t - f2)( -1 - If c2+ f”l( I + f)C)’ 

tXx0 $g I, --I, I) =- 
r’(-l-f+2f2+(l+f)J~ 

2( 1+21)(-l + t - t)q 1 - t - fJ)’ 
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From 

-1+t+t* 
(84) &(4-4-l)= *+b $ gJt,-f,f), - 

-1+t+t* 
(85) g2(t, t,-t)=-- I+t_t2 g*(I, t, t), 

we have 

(86a) G*(t) =+T(gz(f, f, f)+gJf, -f, fh -c -- 

f%l+4r’+( 1 -2t’ ‘2t’)A) 
(86b) GJr)=- 

2( I - 2r ,( I + 21)( 1 + t - fy( 1 - f - f2y’ 

For G,( t), we have successively 

(87) g_dt, t, t) = 
t*( 1 -2&-A) 

- 2( 1 _ t - ty ’ 

(Xs) g,\ I, -r, ,‘)= 
I”(-1 +2r’+L?) 

2( 1 -t- t - f2)( 1 - f - t’)’ 

(89) 
th( I -2t’-A) 

g.?(tr -t. -f)=2(1 +f fy , - 

(90) G,( t) = 
t”( 1 -c-.1, 

2( 1 Ii_ t - ty( 1 + t - ty 

Combining (81), (86b) and (90) according to (77), we have the following theorem. 

Theorem 1O.t. The generating _function for the number pi!,’ of’ type 111 convex poly- 
mimes with perimeter 2n is 

(91) 1 p_!‘,‘t”’ = 
ty2 - tar*+ 75rj- 127th+95tX-27t’“+4t”) _- 

)I ‘h (I -2t)q I +2t)‘( 1 _ 2,‘)( 1 + t _ t’)‘( 1 - t -3 

1 i. The number of convex polyominoes 

The generating function p(t) for the number pzn of convex polyominoes with 
perimeter 2n is obtained by adding the three generating functions pI( t), prl( t)., plrl( t) 

given in Theorems 6.3, 8.1 and 10.1 We thus restore the initial symmetries of the 
convex polyomino and dramatic simplifications occur. Using again MACSYMA, 
we obtain the following theorem. 
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Theorem 11.1. 771~ generating function for the number p2” of convex polyominoes with 

perimeter 2n is 

(92) x 
--6t*+ 11 t4--4P) ___4ty 1 -&2)-V~. 

n T2 

The surprising fact is that the inverses of the zeros of the denominator of the 
rational fraction are integers. 

We can expand the generating function (92). The rational fraction gives success- 
ively 

(93) 1 = c ( n + 1)4V, 
(I -4t*y rI’o 

(94) 
t4( 1 -6t?+ 1 1r4-4t6) 

(I -4tq* 
= P+ ZP+ 1 (2n + 11 )$“t”‘~+*. 

n ‘-0 

The algebraic part is expanded as follows, 

(95) (1 -4$)- 312 = 1 - 1 -- 1X3X. l ~X(2nfl) 
2” 

4’Y” 
n =o n ! 

Subtracting (95) times 4f” from (94) we have proved our formula given in Theorem 
1.1: 

(96) I),lrr+x- (2n + I I )4” -4(2n -t 1)(2:r). 

12. 

(1) 

Conclusion and final remarks 

We have solved an open problem in enumerative combiriatorics by using alge- 
braic languages methodology, while tentatives using ‘classic;rl analytic techniques 
have not yet succeeded. Although the tinal formula is surprisingly simple, so far 
this is the only proof we know. 

(2) We believe that one of the interests of this method lies in the confrontation 
between two different points of view. Combinatorists are looking for enumeration 
formulae while algebraic language theorists are motivated by Computer Science 
considerations. In particular, the combinatorist is looking at the languages up to a 
commutation of the letters, and may consider languages not necessarily algebraic, 
but being in bijection with an algebraic (or even rational’) language. Multi-head 
push-dew uutomata are of special use to produce such bijections. 

Such considerations are illustrated by Cori et al. [7] where sh@?e of two Dyck 
V~Ords U f1 { A-, .ui:” and 13 c (~1, _F}* is c’hanged bijectively into a pair of two Dyci, words. 
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Note that these commutation considerations are different from the theoretical 
concepts of commutative languages introduced by Latteux [25]. 

(3) In this paper, there is a constant interplay between the bijections, the languages 
and the computations (in commutative variables). Other codings (especially for 
types II and III) would be possible, using the main idea of the two bijections Q, 
and /3 for stack and parallelogram polyominoes. A more direct bijection can be 
explicited for type II, but with algebraic languages that are not linear. The bijection 
we gave in Section 7 has the advantage to produce a language easy to define and 
leading to an ultimate coding with words of a rational language. Slight modifications 
of a bijection can make the language not algebraic. 

(4) M.-P. Delest has produced a direct extension of the bijection /3 for row-convex 
poiyominoes (see Section I ). This bijection gives an algebraic generating function 
for the number of row-convex polyominoes according to the perimeter [lo]. (Remark 
that conversely to the case of convex polyominoes, the enumeration of row-convex 
polyominoes according :o the perimeter is much more difficult than enumeration 
according to the area.) It is possible to characterize in this coding polyominoes that 
also are column-coll:Fex. Thus it would be possible to give a unique algebraic 
language codinlfp all convex polyominoes. Unfortunately, the definition of the 
language is much more complicated than the OIN of the three languages introduced 
here, and the corresponding computations seem to be much longer. 

(5) It would be easy to define a unique algebraic language (a slight extension of 
the pigmented Dyck language) such that the three algebraic languages coding each 
type of polyominoes are contained in that language. 

(6) It would be possible to write down an algebraic grammar defining the languages 
for types I and III such that the commutative corresponding algebraic systems can 
be solved by a succession of linear systems of equations, in term of the generating 
function c(t) of the Dyck language. Roughly speaking, the algebraicity has been 
‘concentrated’ in the Dyck language. The generating functions pI( t) and P[,,( t) are 
rational expressions in term of t and c(t). This fact was crucial for solving the 
systems. The corresponding languages are in a certain sense (containing the two 
concepts ‘commutativity’ and ‘rationality’) close to the Dyck language. Note that 
the Motzkin language of Section 3 does not have this property. A theoretical 
invc!?igation about such languages would be probably of interest. 

We now make some final remarks from the combinatorial point of view. 

(7) First, the next step for future work would be to give a direct (bijective) proof 
of the formula for p2n. Things are completely different once an exact formula is 

known ! 
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Note that a dirlxt classical approach would be to define a convex polyomino as 
a 4-tuple of paths: take the part of the border going clockwise from S to W’ 
(respectively W to IV, N to E’, E to S’). If these 8 points (notice some can be not 

distinct) are fixed 017 each side of a rectangle R, then the total number of such 
4-tuples is a product of four binomial coefficients. But some paths can intersect and 
the configuration does not correspond to a polyomino. Taking the difference between 
two products of four binomi& coefficients gives (from the Gessel-Viennot 
methodology [ 133) the right number of polyominoes. Thus pzn is obtained by taking 
the difference of two sums (for all points, and all rectangles of perimeter 2n) of 
products of four binomial coefficients. The difference of two numbers giving pZn is 
not the same as the difference of the formula of Theorem 1.1. Using the bijection 
p and formula (24), it would be possible to reduce the sum to products of three 
binomial coefficiellts. 

(8) A major problem would be to introduce the area of the polyomino in our 
computation. This has been done f&or stack poiyominoes [42] and parallelogram 
polyominoes [JO, 12, 181. The area is easily determined from the word coding the 
polyomino. The problem is to make a q-analog of what we have done. 

(9) Notice that since this work was completed, we have solved two other problems 

using the same methodology: the number of the so-called directed lattice aninlals 

introduced recently in statistical physics (see [40]) and the number of secortdar~* 
smrmrt~~ of single-stranded nucleic acids (i.e., RNAS, . . . ) having a given com- 
plexity in biology (s;:e 1391). With the coding of Cori and Vauquelin [8] for planar 

maps, WC have four examples of a (coding of a planar ‘picture’ with words of an 

algebraic language. It is intriguing that the four codings use languages ‘close’ to the 

Nlotzkin asId Dyck languages. 

(10) In conclusion, convex polyominoes enumeration is atr example of a com- 

binatorial yroblem soived by ‘bijective methods. The irony is that the solution ends 

with tedious computations. 
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