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Abstract

The notion of lacunary infinite numerical sequence is introduced. It is shown that for an arbitrary
linear difference operator L with coefficients belonging to the set R of infinite numerical sequences,
a criterion (i.e., a necessary and sufficient condition) for the infinite-dimensionality of its space VL of
solutions belonging to R is the presence of a lacunary sequence in VL.
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1 Introduction
Finding sequences satisfying linear difference equations with constant coefficients (called C-finite sequences)
is a classical and well-studied topic: the solution set forms a vector space and its dimension is equal to the
order of the operator. If one passes from linear to nonlinear equations, questions about the structure of
the set of solutions in sequences become more complicated [2] or even undecidable [3]. However, one can
still define and study an interesting notion of the dimension of the solution set as was shown in [4]. In this
paper, we take a different route by keeping the equations linear but substantially relaxing the restrictions on
the coefficients: following [1], we allow any sequences as coefficients. In other words, we consider equations
in an unknown sequence {x(n)}n∈Z:

ar(n)x(n+ r) + . . .+ a1(n)x(n+ 1) + a0(n)x(n) = 0 for every n ∈ Z, (1)

where a1, . . . , an arbitrary sequences acting as coefficients. One can see that the solutions of (1) for a
vector space. The main question we study in this paper is under which conditions the solution space of (1)
has infinite dimension. In [1, Sec. 3], a specific sequence was exhibited such that, if it is a solution of the
equation, then the solution space has infinite dimension. We develop this approach to a complete criterion:
our main result (Theorem 1) is that this happens if and only if (1) has a solution of certain type which we
call a “lacunary sequences” (by analogy with lacunary power series), that is, sequences containing arbitrary
long finite zero intervals.
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2 Example of infinite dimension
The following example shows that indeed, if the coefficients of (1) are arbitrary sequences, the dimension
of the solution space can be infinite.

Example 1. Let L = Σr
k=0ck(n)σk, where

(r + 1) - (n+ k)⇒ ck(n) = 0, (2)

and a sequence a(n) be such that
(r + 1) | n⇒ a(n) = 0, (3)

then by (2) we have ck(n)a(n+k) = 0 for all such n, that (r+1) - (n+k). In turn, (3) gives ck(n)a(n+k) = 0
for all n such that (r + 1) | (n+ k). Thus

L(a(n)) = Σr
k=0ck(n)a(n+ k) = 0

for all n ∈ Z, i.e. VL contains all numeric sequences satisfying (3). As the values of a(n) for n such that
(r + 1) - n can be chosen arbitrary, we conclude that dimVL =∞.

3 Lacunary sequences
We consider a linear difference equation in an unknown sequence {x(n)}n∈Z:

ar(n)x(n+ r) + . . .+ a1(n)x(n+ 1) + a0(n)x(n) = 0 (4)

where {a0(n)}n∈Z, . . . , {ar(n)}n∈Z are arbitrary sequences.
We will call the number r the order of (4). For a sequence {a(n)}n∈Z, its support is defined as

supp({a(n)}) := {i ∈ Z | a(i) 6= 0}.
A sequence {a(n)}n∈Z will be called lacunary if the difference between the consequent elements of the
support (that is, i and j in supp{a(n)} such that i < j and there is no k ∈ supp{a(n)} with i < k < j) can
be arbitrary large.

Theorem 1. The following statements are equivalent:

1. the dimension of the solution space of (4) is infinite;

2. (4) has a lacunary solution.

The proof of the theorem will be based upon the following lemmas.

Lemma 1. Assume that the dimension of the solution space of (4) is infinite. Then there is a ray S in Z,
that is, a set of the form Z>i0 := {i ∈ Z | i > i0} or Z6i0 := {i ∈ Z | i 6 i0}, such that the subspace of the
solutions of (4) with the support contained in S is also infinite-dimensional.

Proof. Consider the subspace V of the solution space of (4) consisting of the sequences {x(n)}n∈Z satisfying
x(0) = x(1) = . . . = x(r) = 0. This is a subspace of a finite codimension in the whole solution space (that
is it is defined by finitely many constraints), so it must be also infinite-dimensional. Consider a solution
{x(n)} of (4) belonging to V . Since every next term in a solution of (4) depends only on the previous r,
this solution can be represented as a sum of

x+(n) =

{
x(n), if n > r,

0, otherwise
and x−(n) =

{
x(n), if n < 0,

0, otherwise

Thus, V is a direct sum of subspaces of solutions of (4) with the support contained in Z>r and Z<0,
respectively. Therefore, at least one of these subspaces has infinite dimension.
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Lemma 2. Assume that the dimension of the space W of solutions of (4) with the support contained in
Z>0 is infinite. There exists an index J > 0 such that there exists a nonzero solution of (4) with the support
contained in [1, . . . , J ].

Proof. For every i > 0, we denote by Wi the projection of the space W onto the coordinates [1, . . . , i].
Since the dimension of W is infinite, the dimension of Wi can be arbitrarily large. Consider J such that
dimWJ > r + 2. We will prove that such J satisfies the conditions of the lemma. Consider a subspace of
WJ consisting of sequences satisfying

x(J − r) = x(J − r + 1) = . . . = x(J) = 0

It has a codimension at most r + 1, so its dimension is at least one. Therefore, there exists a nonzero
element in W of the form

x0(n) =





0, if n 6 0,

x(n), if 0 < n < J − r,
0, if J − r 6 n 6 J,

x(n), if J < n.

Since the possibility of extending a finite solution to an infinite one depends only on the last r terms, W
also must contain the following solution

x1(n) =





0, if n 6 0,

x(n), if 0 < n < J − r,
0, if J − r 6 n.

Since supp(x1) ⊂ [1, . . . , J ], the lemma is proved.

Proof of Theorem 1. Implication 1 =⇒ 2. Again, let W be the space of solutions of (4) with the suppport
belonging to Z>0. Lemma 1 implies that, after shifting and reversing indices if necessary, we can further
assume that the dimension ofW is infinite. We will inductively construct a sequence of indices J1, J2, . . . and
solutions A1, A2, . . . of (4) as follows. We apply Lemma 2 and obtain index J1 and the corresponding solution
A1. Now we assume that the index J` and solution A` are already constructed. Then we apply Lemma 2 to
the solutions of (4) with the support contained in Z>J`+`. We thus will obtain index J`+1 and solution A`+1.
The constructed solutions A1, A2, . . . have final supports, and the difference min supp(Ai+1)−max supp(Ai)
is at least i+ 1 by construction. Consider an infinite sum A1 + A2 + A3 + . . .. It is well-defined since the
supports of the summands do not intersect. This sum is the desired lacunary solution.

Implication 2 =⇒ 1. Let {x(n)}n∈Z be a lacunary solution of (4). Consider finite intervals of zeroes
in {x(n)} of length greater than r, that is, two indices i < j such that

x(i) = x(i+ 1) = . . . = x(i+ r) = x(j) = x(j + 1) = . . . = x(j + r) = 0 and ∃i < k < j : x(k) 6= 0.

Since the order of the equation is r, the sequence

x0 =

{
x(n), if i+ r < n < j,

0, otherwise

is a nonzero solution of (4) with finite support. Repeating this operation for other pairs of zero intervals
of length greater than r which do not overlap with each other (this is always possible because there are
infinitely many of them due to lacunarity), we obtain nonzero solutions {x1(n)}, {x2(n)}, . . . of (4) with
finite non-intersecting supports. They are linearly independent, so the dimension of the whole solution
space is infinite as well.
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Example 2. Go back to Example 1. The equation L(y) = 0 has lacunary solutions, e.g., the sequence

l(n) =

{
1, if n = 2m(r + 1) + 1 for some m ∈ Z,
0, otherwise.

References
[1] S. Abramov, M.A. Barkatou, M. Petkovsek. Linear difference operators with coeffcients in the form of

infnite sequences. Computational Mathematics and Mathematical Physics, 2021, Vol. 61, No. 10, pp.
1582–1589.

[2] A. Ovchinnikov, G. Pogudin, T. Scanlon. Effective difference elimination and Nullstellensatz. Journal
of European Mathematical Society, 2020, Vol. 22, No. 8, pp. 2419–2452

[3] G. Pogudin, T. Scanlon, M. Wibmer. Solving difference equations in sequences: Universality and
Undecidability. Forum of Mathematics, Sigma, 2020, Vol. 8, e33.

[4] M. Wibmer, On the dimension of systems of algebraic difference equations. Advances in Applied
Mathematics, 2021, Vol. 123.

4



ACM Communications in Computer Algebra, Vol. 57, No. 1, Issue 223, March 2023

Counting clean words according to the number of their clean neighbors

Shalosh B. Ekhad and Doron Zeilberger
Department of Mathematics, Rutgers University (New Brunswick)

Hill Center-Busch Campus, 110 Frelinghuysen Rd.
Piscataway, NJ 08854-8019, USA

{ShaloshBEkhad, DoronZeil}@gmail.com

In fond memory of Marko Petkovs̆ek (1955-2023), a great summer and enumerator.

Preface
Our good friend and collaborator, Marko Petkovs̆ek ([PWZ]), passed away on March 23, 2023, and we
already wrote a eulogy [Z], and donated to the Online Encyclopedia of Integer Sequences in his memory
(see https://oeisf.org/donate and search for Petkovsek). However we believe that we can do more
than that to commemorate Marko. We looked through his list of publications, and found the delightful
article [KMP] by Marko, joint with Sandi Klavz̆ar and Michel Mollard, and realized that the beautiful
methodology that they used to solve one very specific enumeration problem is applicable to a wide class of
enumeration problems of the same flavor. More important, since Marko was such an authority in symbolic
computation, we decided to implement the method, and wrote a Maple package

https://sites.math.rutgers.edu/˜zeilberg/tokhniot/Marko.txt ,

that can very fast answer these kind of questions. In particular as we will soon see, Theorem 1.1 of [KMP]
can be gotten (in its equivalent form in terms of generating functions stated as f(x, y) on top of p. 1321)
by typing

WtEs( {0,1 },{[1,1]},y,x,3); .

Our Maple package, Marko.txt, gives, in 0.057 seconds, the answer

− x2y2 − x2y − xy − 1

x3y2 − x3y − x2y − xy + 1
.

The problem treated so nicely by Klavz̆ar, Mollard, and Petkovs̆ek
There are 2n vertices in the n-dimensional unit cube {0, 1}n and every such vertex has exactly n neighbors
(i.e. vertices with Hamming distance 1 from it). The Fibonacci lattice consists of those vertices whose 01
vector avoids two consecutive 1s, in other words of words in the alphabet {0, 1} avoiding as a consecutive
subword the two-letter word 11. Such words are called Fibonacci words, and there are, not surprisingly,
Fn+2 of them (why?).
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Each such word has n neighbors, but some of them are not Fibonacci words. The question answered so
elegantly in [KMP] was:

For any given n and k, how many Fibonacci words of length n are there that have exactly k Fibonacci
neighbors? Calling this number fn,k, [KMP] derived an explicit expression for it, that is equivalent to the
generating function (that they also derived)

f(x, y) =
∑

n,k≥0
fn,k x

n yk = − x2y2 − x2y − xy − 1

x3y2 − x3y − x2y − xy + 1
.

They also considered the analogous problem for Lucas words that consists of Fibonacci words where
the first and last letter can’t both be 1. This problem is also amenable to far-reaching generalization, but
will not be handled here.

The general problem
Input:

• A finite alphabet A (In the [KMP] case A = {0, 1}).

• A finite set of wordsM , (of the same length) in the alphabet A. (In the [KMP] caseM is the singleton
set {11}).

Definition: A word in the alphabet A is called clean if it does not have, as consecutive substring, any of
the members of M .

In other words writing w = w1 . . . wn, a word is dirty if there exists an i such that wiwi+1 . . . wi+k−1 ∈
M . For example if A = {1, 2, 3} and M = {123, 213}, then 12212312 is dirty while 111222333 is clean.

To get the set of clean words of length n in the alphabet A and set of ‘mistakes’ M, type, in Marko.txt,

CleanWords(A,M,n); .

For example, to get the Fibonacci words of length 3 type:

CleanWords({ 0,1 },{ [1,1] } , 3);, getting:

{[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 0, 1]} .

The problem of the straight enumeration of clean words is handled very efficiently via the Goulden-
Jackson cluster algorithm [NZ], but it is not suitable for the present problem of weighted enumeration.

Definition: Two words of the same length in the alphabet A are neighbors if their Hamming distance is
1, in other words, u = u1 . . . un and v = v1 . . . vn are neighbors if there exists a location r such ui = vi if
i 6= r and ur 6= vr.

For example if A = {1, 2, 3}, the set of neighbors of 111 is

{211, 311, 121, 131, 112, 113} .
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Obviously every word of length n in the alphabet A has n · (|A| − 1) neighbors.
However, if w is a clean word, some of its neighbors may be dirty, so if there is one typo, it can become

dirty, and that would be embarrassing (Oops, embarrassing is already dirty). While the word, duckling is
clean, not all its neighbors are clean.

To see the number of clean neighbors of a word w in the alphabet A and set of mistakes M, type

NCN(w,A,M);

Output: Having fixed the (finite) alphabet A, and the finite set of forbidden substrings M (all of the same
length), let fn,k be the number of clean words in the alphabet A of length n having k clean neighbors.
Compute the bi-variate generating function

f(x, y) :=
∑

n,k≥0
fn,kx

n yk .

It would follow from the algorithm (inspired by the methodology of [KMP], but vastly generalized) that
this is always a rational function of x and y.

This is implemented in procedure

WtEs(A,M,y,x,MaxK),

where MaxK is a ‘maximum complexity parameter’. See the beginning of this article for the case treated
in [KMP]. For a more complicated example, where a word is clean if it avoids the substrings 000 and
111, type

WtEs( { 0,1 }, { [1,1,1],[0,0,0] },y,x,5);

getting, immediately:

2x5y4 − 4x5y3 + 2x5y2 − 2x4y3 + 4x4y2 − 2x4y − y2x3 + 2x3y − 4x2y2 − x3 + 2x2y + x2 − 2xy + x− 1

y2x3 − x3 + x2 + x− 1
.

If you want to keep track of the individual letters, rather than just the length, use the more general
procedure

WtEg(A,M,x,y,t,MaxK).

Reverse-engineering the beautiful Klavz̆ar-Mollard-Petkovs̆ek proof and
vastly generalizing it
In fact, the authors of [KMP] proved their results in two ways, and only the second way used generating-
functionology. Even that part argued directly in terms of the (double) sequence fn,k itself, and only at the
end of the day, took the (bi-variate) generating function.
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A more efficient, and streamlined, approach is to forgo the actual bi-sequence and operate directly with
weight-enumerators. Let C(A,M) be the (‘infinite’) set of words in the alphabet A, avoiding, as consecutive
substrings, the members of M , and for each word w in C(A,M), define the weight, Weight(w) by

Weight(w) = xlength(w) yNCN(w) .

For example, for the original case of A = {0, 1} and M = {11},

Weight(10101) = x5 y3 .

We are interested in the weight-enumerator

f(x, y) := Weight(C(A,M)) =
∑

w∈C(A,M)

Weight(w) .

Once you have it, and you are interested in a specific fn,k, all you need is to take a Taylor expansion about
(0, 0) and extract the coefficient of xnyk.

Let C(A,M)(i) be the subset of C(A,M) of words of length i, and pick a positive integer k. For any word
v ∈ C(A,M)(k), let Cv(A,M) be the set of words in C(A,M) of length ≥ k that start with v. Obviously

C(A,M) =

k−1⋃

i=0

C(A,M)(i) ∪
⋃

v∈C(A,M)(k)

C(A,M)v .

We can decompose C(A,M)v as follows

C(A,M)v =
⋃

a∈A
C(A,M)va ,

where, of course C(A,M)va is empty if appending the letter a turns the clean v into a dirty word. Now,
writing v = v1 . . . vk, and for a ∈ A the computer verifies whether the difference

NCN(v1 . . . vkaw)−NCN(v2 . . . vkaw)

is always the same, for any v1 . . . vkaw ∈ C(AM )va. The way we implemented it is to test it for sufficiently
long words, and then in retrospect have the computer check it ‘logically’, by looking the at the difference in
the number of clean neighbors that happens by deleting the first letter v1. Let’s call this constant quantity
α(v, a).

It follows that we have a system of |C(A,M)(k)| equations with |C(A,M)(k)| unknowns.

Weight(C(A,M)v) =
∑

a∈A
va∈C(A,M)

xyα(v,a)Weight(C(A,M)v2...vk−1a) .

After the computer algebra system (Maple in our case) automatically found all the α(v, a), and set
up the system of equations, we kindly asked it to solve it, getting certain rational functions of x and y.
Finally, our object of desire, f(x, y), is given by

Weight(C(A,M)) =
k−1∑

i=0

Weight(C(A,M)(i)) +
∑

v∈C(A,M)(k)

Weight(C(A,M)v) .

This is implemented in procedure WtEs(A,M,y,x,MaxK).
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If you also want to keep track of the individual letters, having the variable t take care of the length, the
equations are

Weight(C(A,M)v) =
∑

a∈A
va∈C(A,M)

xv1ty
α(v,a)Weight(C(A,M)v2...vk−1a) .

This is implemented in procedure WtEg(A,M,x,y,t,MaxK).

Sample output

• If you want to see the bi-variate generating functions for words in the alphabet {0, 1}, avoiding i
consecutive occurrences of 1, for 2 ≤ i ≤ 6, see

https://sites.math.rutgers.edu/˜zeilberg/tokhniot/oMarko1.txt .

Note that the original case was i = 2.

• If you want to see the bi-variate generating functions for words in the alphabet {0, 1}, avoiding i
consecutive occurrences of 1, and i consecutive occurrences of 0, for 3 ≤ i ≤ 6, see

https://sites.math.rutgers.edu/˜zeilberg/tokhniot/oMarko2.txt .

• If you want to see all such generating functions (still with BINARY words) for all possible SINGLE
patterns of length 3,4,5 (up to symmetry), look at:

https://sites.math.rutgers.edu/˜zeilberg/tokhniot/oMarko3.txt .

The front of this article contains numerous other output files, but you dear reader, can generate much
more!

Conclusion
The value of the article [KMP], that inspired the present article, is not so much with the actual result, that
in hindsight, thanks to our Maple package, is trivial, but in the human-generated ideas and methodology
that enabled one of us to generalize it to a much more general framework.
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Marko Petkovšek 1955-2023

Marko Petkovšek

Marko Petkovšek was born on April 9th 1955 in
Ljubljana. His father was professor of botanics in the
biology department at the University of Ljubljana,
his mother was a housewife. He had 12 years older
brother. Marko attended elementary and high school
in Ljubljana, both with latin classes. He finished his
mathematical diploma and masters at the University
of Ljubljana. In the year 1983 he met Prof. Dana
Scott at the conference in Dubrovnik who invited him
to do his PhD at the Carnegie Mellon University in
Pittsburgh. We got married in 1978 (we were high
school sweethearts) and had already two daughters,
Ana and Kristina, when we went to Pittsburgh for
the first time from 1983 to 1985. To finish his PhD
we went to Pittsburgh for the second time in 1988 for
another two years, this time with three children since
in the meantime our son Peter was born. Marko’s
first position was at the “Josef Stefan Institute” but
he soon got the job in the Department of mathematics
at the University in Ljubljana which he kept until his
retirement in 2022.

Beside mathematics which was always his first
love he had great knowledge of mushrooms and plants
which he had both learned from his father. Some
of this knowledge he had passed to me so together
with hiking in the mountains, hunting for flowers
(our special love were wild orchids) was our main
hobby.

Eva U. Petkovšek

Sergei Abramov

Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, Moscow,
Russia
sergeyabramov@mail.ru

During the last months of his life, while still undergoing chemotherapy after a recent severe oncological
operation, Marko remained very much engaged in his work. Actually, not only did he collaborate with one
of his young students on an article which was later accepted for publication. He co-wrote as well another
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one on the subject of the representation of prime numbers by quadratic forms with a now deceased surveyor
adept at computer experiments. Marko both came up with the formulation and proof of the corresponding
hypotheses.

Marko never turned down anyone who sought his help, sparing no time or effort to assist them.
There is a story which is particularly telling of his singular generosity and discretion. Recently, during

an online seminar, he was the only non-Russian attendee. To spare him the effort and fatigue of following
the seminar in a tongue he did understand but didn’t speak fluently, it was suggested that the seminar be
held in English : Marko insisted that everyone speak Russian. Marko never allowed for any exceptions to
be made on his account, as the man who had consistently avoided the foreground in the group pictures of
the many conferences he had both organized and attended.

It was at one such conference, the ISSAC’91 conference in Bonn, that we met for the first time. Shortly
after, we started working together and ever since we almost permanently had had some common research
going on. Our first joint paper dealt with d’Alembert solutions of ordinary differential and difference
equations : I had the privilege to witness what an earnest and profound thinker untiryingly seeking (and
founding) the essence of the issue at hand, how indefatigably he rejected superficial and facile answers,
how graciously he shared the product of his effort.

Marko was gifted with rare depth, honesty and generosity.
Marko was an extraordinarily thoughtful and kind person.

Shaoshi Chen

Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science. Chinese
Academy of Sciences, Beijing, China
schenATamss.ac.cn

Marko has always been a hero in my heart! Since I was a PhD student, I carefully studied all of his
papers, from which I learnt a lot about symbolic algorithms for solving differential and difference equations.
Marko was one of the three reviewers of my PhD dissertation, and I have kept his detailed and inspiring
report ever since. Thanks to him for his help and encouragement in my early academic career! After
that, I had more exchanges with Marko at many international conferences, and he became both mentor
and friend of me. During the Moscow Computer Algebra Conference in 2019, I had a lot of discussions
with Marko about the arithmetic theory of power series and stability problems in symbolic integration and
summation. He suggested me to consider the stability of the Gosper algorithm. Last year, when I sent
him my first paper on stability problems, he was very happy and encouraged me to keep moving forward
as always. Marko has always been a gentleman of our community, helping and inspiring countless people.
I believe everyone will remember him forever, and his spirit lives on!

Manuel Kauers1, Christoph Koutschan2, Veronika Pillwein3

1Institute for Algebra, Johannes Kepler Universität, Linz, Austria
manuel@kauers.de
2Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of
Sciences, Linz, Austria
christoph@koutschan.de
3Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria,
veronika.pillwein@risc.jku.at

Marko Petkovsek will live on as an excellent counterexample to Stigler’s law of eponymy, according
to which no scientific discovery is ever named after its actual discoverer. Marko Petkovsek was really the
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discoverer of Petkovsek’s algorithm, which he found as a Ph.D. student, and which immediately became
classic. It is ironic and says much about Marko’s personality that he himself was not really comfortable
with his algorithm bearing his name. He preferred to call the algorithm ’Hyper’. It is well deserved and
perfectly justified that Marko will be remembered for Petkovsek’s algorithm and all his other contributions
to computer algebra (several of which also acquired his name: the Gosper-Petkovsek form, the Abramov-
Petkovsek reduction, ...). At the same time, we also want to remember him as a wonderful and generous
colleague. For example, we had the pleasure to experience his overwhelming hospitality during visits to
Ljubljana, where he cared not only for the scientific program but also enjoyed serving as a passionate tour
guide in the beautiful surroundings. Marko has always been eager to support young colleagues by writing
valuable letters of recommendation. He also served as member of many Ph.D. and promotion committees.
We are saddened that he left us way too early and extend our condolences to his family.

Sandi Klavžar

Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
sandi.klavzar@fmf.uni-lj.si

Marko Petkovšek was born in 1955 and died in 2023. After completing his PhD in 1991 at the School
of Computer Science, Carnegie Mellon University, Pittsburgh, he worked as a professor and researcher at
the University of Ljubljana until his retirement in 2021.

Marko Petkovšek has an outstanding worldwide reputation in the fields of discrete mathematics and
theoretical computer science, which he has earned through his research and work in the field of sym-
bolic computation; to mention only his well-known book A=B and the “Hyper” algorithm for solving
linear recursive differential equations with polynomial coefficients in hypergeometric form, nowadays called
Petkovšek’s algorithm.

In addition to fundamental results and publications in symbolic computation, Marko’s work in graph
theory, where we have collaborated intermittently over several decades, also contributes to his visibility, so
let me say a little more about his work in this area. In graph theory, he has worked on various classes of
perfect graphs, graphs with non-empty intersections of longest paths, hereditary graph classes, Fibonacci
and Lucas cubes, and several other problems. One of the first problems that Marko suggested as a problem
worth of investigating was the problem of the intersection of longest paths in graphs. We wrote a joint
paper that was then almost ignored for a quarter of a century, but in the last decade it has had a very
wide resonance. Marko’s mathematical breadth has been extremely welcome in the treatment of various
problems, as it has often given us unexpected insights into the topics at hand. As an example let me
mention his contributions to the enumeration of the vertex and edge orbits of Fibonacci cubes and Lucas
cubes. Marko’s work also established new directions of development. In his paper [Marko Petkovšek,
Letter graphs and well-quasi-order by induced subgraphs, Discrete Mathematics 244 (2002) 375-388] he
introduced the notion of letter graphs and proved that the class of k-letter graphs is well-quasi-ordered by
the induced subgraph relation and that it has only finitely many minimal forbidden induced subgraphs.
The paper was not noticed for the first decade after its publication, but in recent years it has received a
tremendous response and constitutes a fundamental reference for the development of the field that Prof.
Dr. Petkovšek had visionarily outlined more than a decade earlier.

Let me finish with a few personal thoughts about Marko. Our deep and unbroken friendship began
almost 40 years ago, when I shared an office with him as a freshman assistant. To be assigned to his
office was an extraordinary stroke of luck for me, because he introduced me to the world of research and
transferred his enthusiasm for it to me. He was the best possible friend. Despite his broad mathematical
knowledge and depth of thought, he was extremely modest and tried to hide his strengths as much as
possible. His company was always extremely pleasant and relaxing, whether it was on mountain trails or
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on Saturday evenings playing bridge. In addition to mathematics, he had a broad general outlook. Let
me just mention that he was able to name all the flowers along the mountain paths in three languages, his
mother tongue Slovene, German, and Latin.

Unfortunately, Marko left us much too soon. We will always remember the beautiful moments we spent
with him and keep him in our memories as a great man in every way.

Matjaž Konvalinka

Department of Mathematics, University of Ljubljana, Ljubljana, Slovenia
matjaz.konvalinka@fmf.uni-lj.si

There are three sad moments I associate with Marko, each much sadder than the previous one. First,
the announcement that he is retiring; second, hearing that he is ill; and last, his passing a few weeks ago.

But there are thousands of happy moments. What a marvelous colleague he was! Hard-working,
well-read, always friendly and ready to help. An excellent mathematician, an avid hiker, botanist and
bridge-player, and a calming presence in every situation. He always put other people first; senior people
because they were senior and deserved respect; younger people because they were younger and deserved
an opportunity.

Marko was a wonderful teacher, always extremely precise and able to engage his audience. He deeply
influenced how we teach discrete mathematics, optimization and theoretical computer science courses at
our department. His notes for these classes are amazing – essentially textbooks once TeXed up! He also
deeply influenced my own career path, by showing me how beautiful and exciting combinatorics is.

There is now palpable sadness at the Department of Mathematics of the University of Ljubljana. We
miss him, and we are sad that he didn’t get to experience many more years with his family.

Ziming Li

Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science. Chinese
Academy of Sciences, Beijing, China
zmli@mmrc.iss.ac.cn

Marko Petkovsěk was not only an outstanding researcher in symbolic combinatorics and computer
algebra, but also an influential educator.

His seminal book “A=B”, coauthored with Herbert Wilf and Doron Zeilberger, has been studied and
discussed in great detail at several reading seminars held in our laboratory. Marko generously provided a
PDF copy of the book on his home page, making it easily accessible to many of us.

During his visit to the Symbolic Computation Group (SCG) at the University of Waterloo in 2003,
Marko was invited by Eugene Zima to teach Gosper’s algorithm as part of the “Computer Algebra” course
for graduate students. As a postdoc at SCG, I had the privilege of auditing Marko’s lecture, and was
highly impressed by his fluent and elegant teaching style. In particular, his lucid explanation of the in-
genuity behind Gosper’s algorithm left a lasting impression on me. To this day, I still remember this lecture.

Peter Paule

Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria
Peter.Paule@risc.uni-linz.ac.at

A couple of associations with Marko Petkovsek:
a brilliant PhD thesis (his algorithm ”hyper”) with Dana Scott,
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a pioneer in computer algebra and symbolic summation (e.g., the Gosper-Petkovsek normal form),
a coauthor (with H.S. Wilf and D. Zeilberger) of the iconic book ”A=B”,
a generous host,
an ORCCA Research Chair,
a highly welcome visitor to RISC,
enjoyable evenings (e.g., with the Wilfs at the CAMTP Maribor, 2010),
his presence made the duration of a transatlantic flight shrink,
a wonderful colleague as one can only wish for. -
Marko: we miss you badly!

Carsten Schneider

Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria
cschneid@risc.jku.at

The first time I got in touch with Marko was at the Séminare Lotharingien de Combinatoire at Kloster
Schöntal (Germany) in March 1999.There I got the chance to present my prototype implementation of
Karr’s indefinite summation algorithm that I explored within my first year of PhD studies at RISC. As a
novice, it was exciting for me to meet someone of the famous A = B-gang. In particular, when I listened
to Marko’s three keynote lectures “Exact solutions of linear recurrence equations” I got really thrilled.
I already tried some innocent attempts to solve linear recurrences in general difference fields. But his
crystal clear presentation and his vision of future developments showed me his beautiful point of view how
recurrences can and should be solved in an elegant way. Needless to say, this was a true corner stone of
my future academic life and paved my way for future scientific investigations.

Luckily, I had many other opportunities to spend time with Marko. One of the most enjoyable meetings
was in January 2008 in San Diego where we both presented a talk in a Special Session of the AMS. We
were both happy that we found us in this gigantic gathering and used the chance to spend together a full
day in order to explore the sightseeing places of San Diego. Among them we also visited the aircraft carrier
at the USS Midway museum. Here Marko told me fascinating and entertaining stories from his youth and
his experience of military service at the marine in Slovenia. As in all our other meetings, I got again new
scientific inspirations during our chats. I still remember this day as it was yesterday, and I dare to say
that we made friends with ourselves.

I am very grateful to Marko for all the highly inspiring discussions and that he was willing to share so
much wisdom and knowledge with me. In this regard, I am proud that I had the chance to work with Marko
together with one of the most challenging problems that I have struggled so far: to develop a complete
algorithm that solves linear recurrences with coefficients in terms of Karr’s ΠΣ-fields, a general class of
difference fields in which one can one can represent indefinite nested sums and products. Already in my
PhD thesis I obtained interesting algorithmic results that led to a useful but still heuristic methods to find
solutions within such difference fields. When Manuel Bronstein visited RISC in April 2004, I showed him
my recent implementation to find hypergeometric solutions in ΠΣ-fields. At this occasion I learned that
Manuel together with Marko and Sergei Abramov also worked on this challenge, and it was obvious that
merging our ideas and results would open up new synergies. But with Manuel Bronstein’s unexpected
death this promising cooperation drifted off. But luckily, Marko did not give up: In summer 2009 he
presented the existing results of him, Manuel and Sergei at a satellite workshop of the FPSAC at RISC.
This was the trigger moment for a very fruitful long-term cooperation. For instance, I still remember
with pleasure my stay at his home university in Ljubljana in spring 2011 where we discussed one week
many highly technical details that are strongly related to Michael Singer’s outstanding linear differential
equation solver in the setting of Liouvillian field extensions. This was one of my most productive visits
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and I enjoyed tremendously Marko’s great hospitality. It was still a long way to bring all these derived
ideas to a formal correct but readable form. At last, our common project with Marko, Manuel, Sergei and
myself could be finished in 2020.

Finally, I would like to state that all my current investigations to simplify, e.g., complicated 3-loop
Feynman integrals to indefinite nested sums by means of symbolic summation would be unthinkable with-
out all his pioneering work and inspiration. I am grateful for all his scientific advice that had a major
impact on my academic career and I am very happy that I have met Marko as a real friend.

Min Wu

Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China
mwu@sei.ecnu.edu.cn

It was in 2002 that I first met Marko, in the beautiful INRIA Sophia Antipolis. At that time, Manuel
Bronstein was also healthy and sound.

For me, Manuel, Sergei and Marko were like a perfect golden triangle. They had been collaborated in
differential and difference algebras for many years, though with different interest and personalities. During
my PhD study, I have received many encouragement and valuable comments from Marko on my thesis
work.

Although having got to know Marko early in 2002, we haven’t had many personal communications
until 2016. It was during the first Moscow Computer Algebra conference, we had many opportunities to
talk a lot, and our conversations involved our common old friends, the current state of Russia, the Canon
La Chapelle melody, etc.

What I feel most impressive about Marko is his gentlemanship. He always talked and behaved in a
gentle, modest and considerate way. When talking to him, you are sure that Marko will be fully present
and listen to your carefully and you never feel nervous or stressed, and therefore could express with ease.
Now I could understand what a valuable virtue it is.

So it’s really sad we lost again a good friend, and a gentleman in the computer algebra community.
There will be no pain and suffering in heaven and I believe that Marko is there in heaven. May Marko

rest at peace.

Helena Zakraǰsek

Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
Helena.Zakrajsek@fs.uni-lj.si

After a successful dissertation defense at the Carnegie Mellon University in 1991, Marko returned to
Slovenia. At that time, I was a postgraduate Mathematics student at the University of Ljubljana and so I
had an opportunity to attend his lectures on symbolic computation which were quite a novelty then. He
got me interested in that field of study and he later mentored my master thesis and dissertation defense.

Marko was a great professor. His lectures were precise and clear, he was always well-prepared and ready
to answer any questions we might have had. In case of not having the answer, he would have suggested or
found a possible reference. Whenever I found myself at a dead end, he was there encouraging me proposing
different approaches to cope with the situation.

Marko was not only an excellent scientist – he was above all a great man. Generous, kind, helpful and
always smiling. And that is exactly how he will be remembered.
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Doron Zeilberger

Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, Piscat-
away, NJ, USA
DoronZeil@gmail.com

Marko Petkovs̆ek (1955-2023), My A=B Mate

I have only met Marko a few times in my life, but he was a constant
presence.

The first time was in 1991, in Philadelphia, shortly after he de-
fended his Carnegie-Mellon PhD under the logical giant Dana Scott
(https://www.mathgenealogy.org/id.php?id=8024). Herb Wilf invited
Marko to speak at UPenn’s combinatorics seminar, about the amazing
Petkovs̆ek algorithm. Both Herb and I were very excited about Marko’s
algorithm, since that was the missing link needed by us to solve the at-
the-time wide open decision problem for the existence of a closed-form
solution for definite hypergeometric summation.

Recall that the famous Gosper algorithm [G] decides whether an indef-
inite sum

F (n) :=
n∑

k=1

f(k) ,

where f(k) is a hypergeometric term (i.e. f(k+1)/f(k) is rational function of k), is again hypergeometric.
But what about definite summation, i.e.

F (n) :=
n∑

k=0

f(n, k) ,

where f(n, k) is (proper) hypergeometric in both discrete variables n and k? So-called Wilf-Zeilberger
Algorithmic Proof Theory, and the Zeilberger algorithm (see [PWZ]) can always find the next-best
thing to a closed-form solution, a linear recurrence equation with polynomial coefficients, of some
order L. In other words come up with L + 1 polynomials: p0(n), p1(n), . . . , pL(n); such that

L∑

i=0

pi(n)F (n + i) = 0 .

If the order, L, happens to be 1, then we know right away that F (n) is closed form (in the sense of being
hypergeometric), but what if L > 1?

Zeilberger’s algorithm guarantees to output some recurrence of some order, but does not always give
you the minimal order. In order to know for sure that there is no first-order recurrence, we need the
amazing Petkovs̆ek algorithm Hyper [P1] [P2] [P3] [PWZ] (Ch. 8). That was exactly the missing
ingredient that we needed to settle this important decision problem.

As Marko describes so charmingly in his reminiscences about Herb Wilf [CGH], this connection lead to
our collaboration A=B [PWZ], whose table of contents was drafted in the Moosewood vegetarian restaurant,
in Itacha, New York.

Marko then went on to become a leader in symbolic summation and difference equations, with
very deep work in collaboration with Sergei A. Abramov, and others. He also wrote a charming paper with
Herb Wilf about a ‘high-tech’ proof of an important identity in enumerative combinatorics [PW].
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When Bill Chen organized a conference in Tianjin to celebrate my 60th birthday, in the summer of 2010,
he asked me whom to invite, and of course I suggested Marko, whom Bill dully invited. Unfortunately,
Marko was unable to come, but instead wrote me this nice email.

From Marko.Petkovsek@fmf.uni-lj.si Sun Aug 8 17:30:52 2010

Dear Doron,

I was looking forward very much to the Zeilberger-fest at Nankai. Alas, as it

turned out, I will not be able to attend it. Last week I had a small operation

on my leg (nothing serious - removal of a large carbuncle probably caused by an

insect bite), but the wound has not healed yet and my doctor advised against

traveling.

So, I just wish you a very happy |A5|-th birthday!

Best regards,

--Marko

Last time I met Marko in person was during Herb Wilf’s 80th Birthday conference, held May 26-29,
2011, in Wilfrid Laurier University, Waterloo, Canada, and organized by Eugene Zima and Ilias Kotsireas
https://cargo.wlu.ca/W80/. Marko gave a great talk on enumeration of structures with no forbidden
substructures that clearly showed that he had a very broad perspective of combinatorial enumeration. In
his own words
(from https://sites.math.rutgers.edu/~zeilberg/akherim/W80abstracts.pdf ):

Many interesting classes of combinatorial structures are defined by restricting some general class of
structures to those structures that avoid certain “forbidden” substructures. Examples include words avoiding
forbidden subwords or subsequences, permutations avoiding forbidden patterns, matrices avoiding forbidden
submatrices, graphs avoiding forbidden subgraphs, induced subgraphs, minors, or topological minors. We
will try to look at the abundance of enumeration problems (solved and unsolved) presented by such classes.

Marko will be sorely missed, but his mathematics and algorithms guarantee his immortality.
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Recent and Upcoming Events

Recent Trends in Computer Algebra 2023
France

Program March 6–10, Luminy

• Preparatory School during the French Computer Algebra Days

Spring 2023, Lyon
three one-week workshops.

• March 27–31: Effective Aspects in Diophantine Approximation
Organized by B. Adamczewski, A. Bostan, B. Salvy, W. Zudilin.

• May 22–26: Certified and Symbolic-Numeric Computation
Organized by N. Brisebarre, A. Mahboubi, D. Pous, B. Salvy.

• June 26–30: Mathematical Software and High Performance Algebraic Computing
Organized by W. Decker, J.-G. Dumas, C. Pernet, E. Thomé, G. Villard.

Fall 2023, Paris
courses, topical days, seminars, general audience talks and three one-week workshops.

• September 25–29: Fundamental Algorithms and Algorithmic Complexity
Organized by J. van der Hoeven, M. Giesbrecht, P. Koiran, G. Villard.

• October 16–20: Geometry of Polynomial System Solving, Optimization and Topology
Organized by C. D’Andrea, P. Lairez, M. Safey El Din, É. Schost, L. Zhi.

• December 4–8: Computer Algebra for Functional Equations in Combinatorics and Physics
Organized by A. Bostan, J. Bouttier, T. Cluzeau, L. Di Vizio, C. Krattenthaler, P. Lairez,
J.-M. Maillard.

Organizers Alin Bostan, Mark Giesbrecht, Christoph Koutschan, Marni Mishna, Mohab Safey El Din,
Bruno Salvy, Gilles Villard

Website https://rtca2023.github.io/

June 12–21, 2023
FoCM 2023: Foundations of Computational Mathematics
Paris, France

Website https://focm2023.org/

June 12–23, 2023
CIMPA School: Algebraic and Tropical Methods for Solving Differential Equations
Oaxaca, Mexico

Website https://www.matem.unam.mx/~lara/cimpa23.html

June 26–28, 2023
Computer Algebra: 5th International Conference (online)
Moscow, Russia

Website http://www.ccas.ru/ca/conference
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Events

July 9–15, 2023
ICLP 2023: 39th International Conference on Logic Programming
London, UK

Website https://iclp2023.imperial.ac.uk/

July 10–14, 2023
SIAM AG23: SIAM Conference on Applied Algebraic Geometry
Hybrid Event, Eindhoven University of Technology, Eindhoven, The Netherlands

Website https://www.siam.org/conferences/cm/conference/ag23

July 17–21, 2023
ACA 2023: 28th International Conference on Applications of Computer Algebra
Warsaw, Poland

Website https://iit.sggw.edu.pl/instytut-informatyki-technicznej/aca2023/

July 24–27, 2023
ISSAC 2023: 48th International Symposium on Symbolic and Algebraic Computation
Tromsø, Norway

Website https://www.issac-conference.org/2023/

July 28, 2023
SC-square 2023: 8th International Workshop on Satisfiability Checking and Symbolic Computation
Tromsø, Norway

Website http://www.sc-square.org/CSA/workshop8.html

August 28–September 1, 2023
CASC 2023: 25th International Workshop on Computer Algebra in Scientific Computing
Havana, Cuba

Website http://www.casc-conference.org/

October 26–27, 2023
Maple Conference 2023
Free Virtual Event

Website https://fr.maplesoft.com/mapleconference/2023
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