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SUMMARY AND INTRODUCTION

Computation by the use of difference equations in the backward direction

was introduced by J.C.P. Miller (1952). In this reference, he applied the

method, now sometimes called Miller's algorithm, to the calculation of Bessel

functions, and it proceeds essentially as follows.*

Consider the difference equation

y(n) - 2(n+I) y(n+l) - y(n+2) = 0,x>0,n£0, (l.l)
X

which is satisfied by the modified Bessel functions In(x) and (-)nKn(x) .**
Let m be an integer s 0 . Put

Vl(m) = 0 , Ajm) - 1 , (1.2)

and calculate An(m) for 0 ^ n ^ m-1 from (l.l), i.e..

Now the series

CO ri,k=o,
(1.4)

k=0 I2,k>0 ,

* Miller has stated that he first used the method as an aid in the computa¬
tion of Airy integrals, see Miller (1946).

** All special functions in this work are defined as in Erdelyi et al (1953).



is known. (Erdelyi et al (1953), v. II, p. 7).

Lot

[m/2]
fi(in) •-= (-) skA2k(m) > (1-5)

k-0

where Qn/2^ means the largest integer not greater than m/2 . Then, by

using the known asymptotic properties of In , Kn for large n , one can show

that

lim An(m)/fi(m) = ^(x) , n S 0 , x > 0 . (1.6)
m~»co '

In fact, the asymptotic estimates

In(x) = [1+0(n_1)] > (-)X(x) = T(n) [l+OCn"1)] (1.7)

follow from the ascending series representations of In and Kh , and, since

An(in) satisfies (l.l), it can be represented as a linear combination of the

(linearly independent) solutions (1.7), see the Appendix. This means that

An(m) = §i(m)ln(x) + ^(mH-^Kjx) • C1*8)

From (1.2) and

^(x)Km-n(x) + Im+l(x)Km(x) = X/x > C1'9)

we conclude that



^(m) = xK^+1(x) , §2(m) = x(-)mIlll+1(x) . (1.10)

Thus

An(m) = mi (2/x)min(x) [l + 0(m-1)] , m^-co f

Q(m) = mi (2/x)m JjL + 0(m~1)J , ,

>
(1.11)

so (1.6) follows.

The above analysis shows clearly why the process converges, and also why

as n->» . This characteristic of Miller's algorithm, namely, that the solu¬

tion of the difference equation to which the process converges, if it converges,

must, in a certain sense be the smallest solution, remains true when the algo¬

rithm is applied to general homogeneous difference equations, see our Theorem

A remarkable feature of the Miller algorithm is that no tabular values of

In are needed in the computations, only a normalization relationship, such as

(1.4). Tabular values would be required, of course, if (l.l) were used in the

forward direction, and moreover, when (l.l) is used in the forward direction

to compute In starting with initial values of IQ and Ip, those small errors

inevitably introduced in the course of the computation grow rapidly with n .

n
.it converges to In and not to (-) Kn: In is very small compared to Kn

4.3.
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Such a phenomenon is called instability.*

The method proposed by Miller created enormous interest, and a number of

papers subsequently appeared in which the writers either further treated the

application of the method to Bessel functions, or else showed that the method

could be used to compute other special functions. Stegun and Abramowitz

(1957), Randels and Reeves (1958), Goldstein and Thaler (1959), Corbato and

Uretsky (1959), and Makinouchi (1965a,b) all treated the computation of Bessel

functions. Rotenberg (i960) showed how the algorithm could be used to compute

toroidal harmonics (i.e., Legendre functions) and Miller himself applied the

method to parabolic cylinder functions (1364).

Gautschi (1961a) discussed the computation of repeated integrals of the

error function

CO

^nl) f (t-x)ne"t dt , n 3 0 , (1.12)'
x

which satisfy

* The computation of (~)nKn by using (1.1) in the forward direction with
initial values of KQ and is stable, i.e., random errors intro¬
duced during the computations do not grow with n . In general, a differ¬
ence equation can be used efficiently in the forward direction only to
compute the "largest" solution of the equation. However, the analysis of
the forward procedure is rather less of a problem than the analysis of
Miller's algorithm, see Gautschi (ca 1962), and will occupy none of our
attention here.

4
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y(n) - 2xy(nhl) - 2(n+2)y(n+2) = 0 , (1.13)

and in a later paper (1961b) discussed the computation by backward recursion

of a number of other functions defined by definite integrals.

The Miller algorithm can be applied to problems other than the computa¬

tion of the special functions. Recently, it has been employed in such diverse

is. an arbitrary analytic function (Gautschi (1966)) and the computation of

coefficients for the Chebyshev polynomial expansions of functions which satisfy

differential equations with polynomial coefficients (Clenshaw (1957), (1962)).

Of course, any numerical technique of such general applicability demands

a thorough theoretical investigation. Gautschi (1961b), who analyzed its con¬

vergence when applied to an arbitrary second order difference equation, seems

to have been the first writer to discuss the Miller algorithm from a general

point of view. He continues this analysis in two unpublished works (ca 1962,

1963) using as his main tools the theory of continued fractions and the classi¬

cal asymptotic theory of linear difference equations (e.g., the theorems of

Poincare, Perron, and Kreuser), and he applies his findings to the computation

of Bessel functions, Legendre functions, the incomplete Beta function and the

numerical computation of Fourier coefficients.

By now a great deal is known about the application of Miller's algorithm

to second order difference equations. Conditions on the solutions of the equa¬

tion which will guarantee the convergence of the algorithm have been given by

problems as the calculation of successive deriva/tives of , where f



Gautschi (1961b) and by Olver (1964). Methods of increasing the efficiency

of the algorithm by using the adjoint equation to generate auxiliary sequences

have been given by Shintani (1965). (Our Theorem 2.7 is a generalization of

one of this author's results.)

On the other hand, little is known concerning application of the algorithm

to difference equations of arbitrary order. Gautschi (ca 1962) has touched

briefly on the use of difference equations of order cr > 2 , but, unfortunately

the classical asymptotic theory on which his analysis is based does not give

very realistic conditions for convergence of the algorithm. More specifically,

Gautschi found it necessary to assume the existence of a fundamental set for

the equation (see the Appendix) whose members exhibited radically dissimilar

behaviour as n-><=o , namely if 1(n)j were the set in question, and

yh(n+1)/yh(n) ~ thn h , th ^ 0 , v^ > va_x > ... > v± , (1.14)

n-»«> , 1 < h ^ cr ,

then it could be shown that Miller's algorithm converged (to yq(n)) , provided

of course, that a suitable normalization relationship was known. Needless to

say, this condition is excessively stringent, at least for a very wide class

of difference equations (cf our Theorem 4.2).

The purpose of this work is to examine the application of Miller's algo¬

rithm, as well as several related algorithms, to homogeneous linear difference

equations of arbitrary order with coefficients of a fairly general type.



(The related algorithms are modifications of Miller's algorithm which can be

used when the equation has no smallest solution.)

First; in Chapter II; we formulate the algorithms as they are applied to

difference equations with arbitrary coefficients; and investigate their con¬

vergence properties. Conditions for convergence take the form of rather

unwieldy restrictions on the growth of solutions of the equation and determi¬

nants involving them. To obtain more practical conditions; it is necessary

to restrict somehow the form of the coefficients in the equation. This is

done in the chapters following by requiring that the coefficients possess

certain asymptotic representations as n->» . He are then "able to use as our

principal investigational tool the analytic theory of singular difference

equations which was developed by Birkhoff and Trjitzinsky. Virtually all

difference equations encountered in practical applications are of the specified

form; including all equations with coefficients rational in n . In particular,

the computational procedures discussed by the preceding authors are included

in our analysis.

Chapter III is devoted exclusively to an asymptotic analysis of the solu¬

tions of this difference equation, starting with the above-mentioned theory of

Birkhoff and Trjitzinsky. We then prove two new theorems concerning the repre¬

sentation of those solutions whose growth can be described with only algebraic

and logarithmic terns.

In Chapter XV, we apply the asymptotic results of the previous chapter

to the problem of determining more tractable conditions for the convergence
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of the algorithms given in Chapter II. One result is that, for the type of

difference equation considered, at least one of the algorithms will converge

to a solution of that equation, provided that one can find a fundamental set

for the adjoint equation in which no more than two solutions have the same

rate of growth (in absolute value) as n->«> . A consequence of this theorem

is that, for a second order difference equation of the specified type,

Miller's algorithm, or a suitable modification of it, will always converge.

Chapter IV contains a number of examples, among which are the computation

of the integral

ct an integer s 2 , P(t) a polynomial of degree (a-l) , and the computation

of a class of liypergeometric functions.

In the Appendix of this work are contained definitions, notation, and

those properties of difference equations which are frequently used in the pre¬

ceding chapters. (References to material in the Appendix are preceded by an

A, as A.2, A-VI, etc.)

(1.15)
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II.

In this chapter, we will discuss computation by backward recursion based

on the linear homogeneous difference equation of order a ^ 2

a

]T Cv(n)y(n+v) = 0 , CQ = 1 , Cff(n) f 0 , (2.1)
v=0

where n is an integer ^ 0 .

The first algorithm proceeds as follows. Let m be an integer ^ 0 .

Put

V+a-l(m) = = *•* = = 0 > Am(m) = 1 > (2-2)

and calculate An(m) for 0 ^ n £ m-1 by recursion from

o_
Cv(n)An+v(m) = 0 . (2.3)

v-0

Suppose we are given the convergent series (called a normalization rela¬

tionship)

CO

1 3 Y. ^(k) (2-4)
k=0

where y-j_(n) is a solution of (2.1).

9



Define

m

n(m) = VVk(m) ^
k=0

(2.5)

and

rn(m) = An(m)y/'n(m) . (2.6)

Definition 2.1

If

lim rn(m) = yi(n) , n s 0 , (2.7)
m-> <»

then we say the computation of yq(n) ^y backward recursion based on (2.1)

and (2.4) converges.

Let us analyze the above algorithm. First, by A-IV we note that (2.1)

possesses a fundamental set, ^yh(n)^ > anc^ since An(m) satisfies the equa¬
tion, we can write

where £h is independent of n . By setting n = m,ui+l, ... , m + cr - 1

in (2.8) it is found that

a

(2.8)
h=l

10



eh(m) = Th(m)/D(m) , (2.9)

where , D are defined in A-V, A-VI. D is not zero because of properties

A-I, A-V; and the fact that Ca(n) J 0 .

Thus

a

Y Th(m)yh(n)
rn(m) - — (2.10)

o m

Th(m) 21 LkYh(k)
h=l k=0

and this formulation leads to

Theoi-em 2.1

Let T-^(m) ^ 0 for m sufficiently large.

Define

T-i (m) ^
Eh = RhM " r~7~P\'̂ H sli(n) = Z , 1 s h a o , (2.11)TlW k=0

Wow suppose

lim Rh = lim RhSh = 0 , 2 < h ^ c . (2.12)
m~> co in-> co

Then the computation of yp(n) by backward recursion based on (2.1) and (2.4)

converges.

11



If yx(0) is known from some source, the algorithm and the conditions for

its validity simplify considerably. This means we can take = 0 for

k > 0 , and L0 = y/y1(0) . We have

Corollary 2.1

y1(0) be known and non-zero and let

lim Rj, = 0 , 2 s. h S a . (2.13)
m->®

Then

-An(m) yx(n)lim _ = , n 2: 0
m-> co Ao(m) yi(°)

(2.14)

In the application of Theorem 2.1 one will find it more convenient, for

large m , to calculate Q using the following result, rather than (2.5).

Theorem 2.2

Q satisfies

E ca_v(m+v)Q(m+v) = , m ^ 0 ,
v=0

with the initial values (as obtained from (2.2) - (2.5))

(2.15)

Q(0) = Lq , Q(l) = -C1(0)Lq + Lx ,

0(2) - Lq [C1(0)C1(1) - C2(0)] - L1C1(1) + Lg ,
• • ♦

(2.16)
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Proof:

By (2.8) and A-VI we have, for k , m ^ 0 ,

a_
2_ CCT_v(in+v)Ak(m+v) = 0 , (2.17)
v=0

so

m+g a

2 y C(J_v(m+v)LkAk(m+v) = 0 . (2.18)
k=0 v=0

Now Ak(ni+v) ^ 0 for m+v+1 ^ k ^ m+v+o-l , so if empty sums are inter¬

preted as zero, we can write (2.18) as

o.
2_ Vv(m+V)
v=0

m+y m+a
21 LkAk(m+v) + 21 LkAk(m+v)!
k=0 k=m+v+a

CT

+ 21 Ca-v(K1+v)r2(rn+v) (2.19)
v=0

ay
~ ria+CT + 21 Ca_v(m+v)n(m+v) = 0 .

v=0

For a = 2 , this result is given by Shintani (1965).

Now suppose that u of the R-n' s behave similarly as m->« , but that

the ratio of any one of these to each of the a-u other approaches

13



zero as m->«> . A generalization of a method due to Luke (unpublished); vhich

was in turn suggested by Clenshaw (1864) for a three-term recursion relation;

can often be used to obtain any one of the first u solutions corresponding

to the u %'s . Clenshaw (1962) originally used this method; for a=2 ; to

compute coefficients for the Chebyshev polynomial expansions of certain mathe¬

matical functions.

Without loss of generality; we may assume yp(n) is the solution of

(2.1) that we wish to compute. The algorithm is then described by the follow¬

ing theorem.

Theorem 2.5

Let the constants Li, a be given for 0 ^ k < ® ^ u ; and define
•"-.J J

Let R^ be bounded and bounded away from zero as m->°= for 2 £ h ^ u ;

while Rj—> 0 as m~>co for u+1 s h £ a . Let Fn(m) be as in (2.6) with

Lk -4c 1 anc^ ^(m) > Ti(m) be non-zero for m sufficiently large. Let

also

lirn S, .R, = 0 ; u+1 khkO; H j ^ u ,

m

2kh^O; l<j^U;2^u^a
k=0

(2.20)

m-> oo
f

2 < h s u

14



Then for mq sufficiently large, we can determine for 2 s h ^ u ,

mq < mg < mj < ... < > so that the system of equations

u mv

2Z rrv 22 Lk^r^my) = 1 , j = 2,3,...,u;
v—1 k=0

u

Z -v - 1 ,
V—1

(2.23)

has a unique solution (depending, of course, on the m^ ).
I Iu

Let R^(mj)| be bounded away from zero as mq->co . Then

u

iim 21 TTvrn(mv) = yi(n) j n £ 0 .

mq-> co v=l
(2.24)

Proof:

Note that since Tq(mv), Q(mv) are not zero for mq sufficiently large,

the system (2.23) is well-defined.

Equation (2.23) is

u

Z
v=l

TT,;

CT

2_ ^h^-v^^h, j(mv)
Lh=l

— 1 y 1 ^ j ^ 11 j

* nvT3_(mv)/h(mv) .

(2.25)

The determinant of (2.2b) is

15



Iu I ,u / \
Rh(mj)| |Ah,j| V1 + °(1)J > • (2.26)

The can be chosen so that (2.26) is not zero, else the are

I lu
linearly dependent, by A-I, A-II. Since | ^ j J^ f 0 , we conclude that
(2.23) uniquely determines ttv for m-^ sufficiently large. Furthermore,

when (2.25) is solved for rrv* > one finds that this quantity (and hence ttv

itself) is bounded as mq->«> .

We write

u

YL TTyiynLy.) = ]>~ csys(n) , Cs = cs(m1,m2,...,inu) . (2.27)
v=1 s=1

Tiren

o„. jt. —— • <2-28'-s

v=1

Rh(iTv)Shjl(m^)
h=l

Clearly

lim cs=0,u+1^s^ct. (2.29)
m-|-i>0°

Also, from (2.25) and the boundedness of the tr-^ we have

u

Z Ah jch - 1 + °(1) > rA±->co , 1 £ j 5 u , (2.30)
h=l

16



and since A, . = J. , we conclude from this system of equations that-1-} J

1. s = 1
lim Co

o

mq-><»

■

0, 2 :£ s ^ u ,

(2.31)

which, when used with (2.29) in (2.27), gives the theorem.

The application of the above theorem requires that we know u normaliza¬

tion relations for the desired solution, yq(n) . If, instead, we know u

values of yq , then the following result can be used.

Theorem 2.4

while R^ is bounded and bounded away from zero as m-><» for 1 ^ h ^ u .

Then we can determine k^ , 1 ^ h 5 u , 0 ^ kq < kg < kg < ... < ku ,

so that

Let

lim Rh^O, u+l^h^o,
m->os

(2.32)

(2.33)

and for mq sufficiently large, can be determined, mq < mp < ... < mu ,

so that the system of equations

17



u

v=l 3
y TTv^k.(my)/("V) = yi(kj) > 1 * j 5 u , (2.34)

has a unique solution, irn , 1 ^ h ^ u . Furthermore, suppose | Rja(mj) is
bounded away from zero as my—><» . Then

JL ' ,

lim ]>~ nvAn(mv)/Aki(mv) = yy(n) , n £ 0 . (2.35)
my—>co V—1 /

Proof:

As for Theorem 2.3.

Unless additional assumptions are made about the nature of the coeffi¬

cients Cv(n) in the difference equation, it may not be possible to find a

fundamental set so that Ty(m) is non-zero for m large. However, in most

applied problems, in particular in all those examples of computation by back¬

ward recursion which we discussed in the introduction of this work, the dif¬

ference equation in question possessed coefficients which were rational func¬

tions of n . If this is the case, as we shall see, a fundamental set can

always be chosen so that Ty(rn) is non-zero for m sufficiently large, and

the Miller algorithm at least has a chance of converging. Even if it is only

required that Cv(n) possess an asymptotic series in powers of n ~^U , u) an

18



integer s 1 } the same is true.

It is thus natural that we turn our attention to this kind of equation.

19



III.

In this and the following chapters of this work, the standard form for

the difference equation will be

a

]T Cv(n)y(n+v) = 0 , CQ = 1 , Ca ^ 0 ; a £ 2 , n > 0 , (3.1)
v=0

Cv= Cv(n) ~ n V |c^v + c1^n"l/uJ + c2^n"2/u> + ... | , n->«, (3.2)
where Kv is an integer, u) is an integer 2: 1 , and cQ^v f 0 unless

Cv = 0 . We also assume that the coefficients are written with the smallest

possible value of to . Note that the equation adjoint to (3.1) also has co¬

efficients of the same general form as (3.2). By (A.12), equation (3.1) has

a unique solution y(n) satisfying

y(nQ+j ) = ffj , U j s a , nQ ^ 0 . (3.3)

Thus, for n s nQ s 0 , (3.1) has a fundamental set.

We shall see that there exists a certain fundamental set for (3.1)

whose members share an unusual property: each has an asymptotic expansion,

valid as n—, which consists of an exponential leading term multiplied by

a descending series of the kind (3.2) (where, however, o> may be replaced by

.an integral multiple of io , see (3.4)-(3.7) below). Essentially, these

series are the same as the so-called subnormal series encountered in the study

of ordinary linear differential equations with polynomial coefficients near

20



singular points, see Ince (1956, Ch. 17). This is another example of the

close analogy between differential equations and difference equations.

For our purposes, the existence of solutions of the difference equation

(3.1) which have such asymptotic representations is quite important, since the

very form of the asymptotic series enables us to determine much more practical

conditions for the convergence of the class of algorithms discussed in

Chapter II.

However, we will have to examine the properties, algebraic and analytic,

of these solutions in great detail before we can attack the convergence prob¬

lem directly, and the present chapter is devoted entirely to this study.

We begin with several definitions.

Consider the series

eQ(p;n)s(p;n) , (3.4)

p £±kl
Q(n) = Q(p;n) = pQn In n + pjn P , (3.5)

"k -£* • I P
s(n)= s(p;n) = n0 ^ (in n)Jn t J q,(p;n) , (3.6)

J=0

-s/p
<lj(p;n) = ^j(n) = / l3qJn , . (3.7)

s=0

where p , r- , p p are integers, p s 1 , p. , 0 , b • are complex param-
j ^ j ^) j

eters, bQ j f 0 , unless bs j = 0 for all Oss<co, rQ = 0 ,

-rr £ Im p-|_ < tt .
21



Definition 5.1

The series (3.4), called a forrnal series (F.S. ), will be called a formal

series solution (F.S.S.) of (3.1) if, when it is substituted in (3.1), the

is equal to zero.

A concept of formal equality between two F.S. can be defined by requiring

that, when the series are written with the same value of p (as is always pos¬

sible), then the parameters t , 0 , bg j , rj , |Uj for both series are the
same. Formal equality of formal solutions also arises in the theory of or¬

dinary differential equations (see Coddington and Levinson (1955), p. 114 ff).

The construction of F.S.S. may be carried out by using the identities

equation is divided by e ^ ' and the obvious algebraic manipulations (see

below) are performed, then the coefficient of each quantity

e+rW">(ln „)J ( o s J s t , r,s = 0,+i.ia, ... (3.8)

) (3.9)

(3.10)

f J \a L.(n+v) = n 1 + — + (3.11)

22



r

ln(n+v)
v v2

In n + - - +
n 2n2

(3.12)

although, in practice, it is difficult to obtain by hand other than the first

few terms this way, see Birkhoff (1930).*

Very often, we shall let "Q(n)," "s(n)," be generic symbols for the

series (3.5), (3.6). The series so denoted do not necessarily have the same

values of the parameters 9 , t , b . , p. , when the series occur in dif-S ) J J

ferent equations. If, however, it is necessary to differentiate between two

such series, we shall do so with subscripts, e.g., Qq(n) , Sp(n) , Q2(n) ,

Sg(n), etc. With this convention understood, we see that F.S. possess the

following properties:

eQ(n+v) (n+v) = eQ(n) (n) ^ v = 1,2,..., (3.13)

Q-,(pjn) Q (p'jn) Q (p*;n)
e s1(p;n) • e s2(p';n)=e s3(p*;n) , (3.14)

where p* is the least common multiple of p and p' .

The sum of two F.S. is not in general a F.S., but if Q(n) , 9 are the

same for both series, we have

* J.C.P. Miller has brought to our attention the fact that the determination
of these series can be done very efficiently by computers.

23



2Q(n)n9qL(pjn) + eQ^n^n9q2(p';n) = eQ^n^n9q3(p*;n) . (3.15)

Definition 3.2

f(n) ~ e^n^s(n) , n—, (3.16)

means that, for every k s 1 , we can determine functions A. ^(n) ,

0 £ j £ t , such that

-v:tvu; -ow \ S~ /-1 \j rt-j//p , -s/pe v 'n f(n) = / (In n)dn 0 2_ hs jn
-Q(n) -0

j=0 s=0

+ n k/^P (in n)^n 1 ^ Ak^(n) ,
j=0

(3.17)

and I A, .| is hounded as n—, for all k,j
k, j

See Birkhoff and Trjitzinsky (1932, p. 62). If t = 0 , this definition

coincides with (A.7)-(A.8). Also (3.17) is unique, since it is readily veri¬

fied that zero has no non-trivial representation of the form (3.16).

Definition 5.3

Let

Wk =
Q-n(n+j)

sh(n+j ) (3.18)

24



By (3.12)-(3.14), Wk is a F.S., andk

\ k
Wk = exp Q.(n)^s(n) = e^n^s(n) . (3.19)

.i-i °

[ Qh(n) ]
We say the k F.S. -j e s (n) ?. are formally linearly independent if
s(n) 7^ 0 . Otherwise, they are formally linearly dependent.

Definition 5.4

There exist exactly r F.S.S. of a certain type (e.g., with Q(n) = 0)

for the equation (3.1) means r F.S. of that type can he constructed vhich are

formally linearly independent, and any r+1 such F.S.S. are formally linearly

dependent.

Wow we may formulate two very important questions about the difference

equation (3.1). Does the equation always possess exactly a F.S.S. of the

general type (3.4)? If so, what relationship do these F.S.S. bear to the

fundamental sets for the equation?

These questions were answered partially by a number of mathematicians,

see Adams (1928) and the references given there. However, only with the ad¬

vent of two papers, the first by Birkhoff (1930) and the second by Birkhoff

and Trjitzinsky (1932) was the theory completed. The results of these two

writers yield
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Theorem 5.1 (Birkhoff-Trjitzinsky)

There exist exactly cr F.S.S. of equation (3.1) of type (3.4), where

p = Truj , for some integer 1 , and each F.S.S. represents asymptotically

some solution of the equation in the sense of (3.16). The a solutions so

represented constitute a fundamental set for the equation.

Definition 5.5

The particular fundamental sets mentioned in Theorem 3.1 will be called

Birkhoff sets. Each member of a Birkhoff set is called a Birkhoff solution.

Now let |yh(n)} , 1 <; h < a , be a Birkhoff set for (3.1), i.e., let
Qh(p ;n)

Yh(n) ~ e sh(p;n) , n—><*> , 1 £ h £ a , (3.20)

which is permissible, since we can write all the F.S.S. of Theorem 3.1 with a

common value of p .

Then none of the determinants

W% ym. (n+j)'mh

u

, 1 < mp < rng < . .. < ir^ s a , (3.21)
1

can be zero for n sufficiently large, and in particular, y^(n) f 0 for n

sufficiently large, 1 5 h £ a • In fact, since the F.S.S. are formally

linearly independent,



Q(n)j*/,W™ = ce 'n
luu

(In n)1 [l + o(l)j , n—} c f- 0 , (3.22)

ultimately W is monotonic in n , as is |yk(n)| .

We now examine more closely the structure of the F.S.S. (3.4).

Theorem 3.2

let (3.l)-(3.2) hold, and let

<Pk(n) = eQ^P'n)nG (In n)\t+<e_k(pjn)n k X^P(t+l-k)Ji\ ,

0 s k ^ t ,

(3.23)

r. an integer.
J

Then if cp4_(n) is a F.S.S. of (3.1), so are cpk(n) , 0 ^ h ^ t-1 .

Proof:

Let

Q(n)_ . . . Q(n)
c?k(n) = e cpk(n; > y(n) = e y(n) (3.24)

Then

Q(n+v )-Q(n) V K+Mv[\ , -l/p ,2 v ' - n e 1 + cn ' r + ... (3.25)

27



j.i0 is of the form m/p , m an integer, so the difference equo.tion for

y(n) will be of the same kind as (3.1), except with cu replaced by p . Let

Cv(n) be the coefficient of the transformed equation and

k j
cpk(n) = n9 ]>_ (in n) qt+^_k(p:n)n (t+l-k)^/^.' , (3.26)

1=0

cp^.(n) being, by hypothesis, a F.S.S. of that equation. Substituting (3.26)
rith k = t into (3.1) and setting to zero the coefficient of (in n)U gives

v=0

v t -sl~u r 1&
CM(n)(n+v)v > qx+u(p;n+v)(u+l)^(n+v) ^ |ln(l+v/n) /V. = 0,

t-u

Z
&=0

(3.27)
0 s u £ t

Let u = t-j :

g. _ 9 ^ r._,/p r -]«&
y Cv(n)(n+v) qx+t_j (n+v)(n+v) 3 (t+l-j )z [ln(l+v/n) /&'.=> 0,
v-0 Jh=0

0 s j £ t

(3.28)

Now writing

ln(l+v/n) = ln(n+v) - In n (3.29)

and expanding by the binomial theorem, we get
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y Cv(n)(n+v) (Inn) (-) /u! ) ^t+^+u-i (n+v ^n+v )
v=0 u=0 JL=0

(3.30)

X (t+1_j )x+u[ln(n+v)] /*•' = ° ,. ° * J * t •

From (3.26) we have

cp (n) = n9 21 (ln n)^qt+<e+u-j(n)n J ^(t+l+u-j)Jl\ , (3.31)
Z=0

and so

CT J

Cv(n) ^"^U^ln n)U(t+1"j )ucPj-u^n+v^u! = 0 > 0 5 j 5 t * (3.32)
v=0 u=0

Wow suppose cp0(n),<p-^(n), . .. ,cp^(n) are F.S.S. of the transformed equa¬

tion, and let j = k+1 in (3.32). We have

— — __

)> Cv(n)cp^+i(n+v) = 0 (3.33)
v=0

But for j = 0 , (3.28) gives

5 0 o
^ Cv(n)(n+v) qt(n+v) = Cv(n>pQ(n+v) = 0 , (3.34)
v=0 v=0

so the induction is complete, and the cp^(n) , 0 s h ^ t , satisfy (3.1).

29



Birkhoff (1930) has noted that, once a maximum value of t is found so

Q0(n)

;^(n) , 1 <: h < t , and in sh(n) > n occurs to the t-h power.

that e 0 s0(n) as a F.S.S. of (3.1), then there are t other F.S.S.,
Qn(n)

However, the explicit form of the series, i.e., (3.23), seems to be new.

We will need information about the number and form of those F.S.S. of

(3.1) whose exponential leading terms are constant. The necessary results

are contained in

Theorem 3.3

Let (3.1)-(3.2) hold, and define

Pk ~ pk(n) " •> ^ F,2,...,
v—1

Po = po(n) = Z_ cv
v-0

(3.35)

Then we can write

Pk ~ n
c?k/co

a + „ _1/u) , -2/ijj
o,k H l,k n 2,k n + , n—, (3.36)

an an integer, a k f 0 unless Pk =; 0 , in which case we interpret^ «-U -Lll tb^CI y Oy k.

Q/ = -co . i^et



r = 'max (c^/tu - k) ,
0 5 k ^ ct

(3.37)

and let

kQ < kj_ < k2 < ... < kx (3.38)

be those values of k for which

OS /a) - k = T , 0 5 k < e» . (3.39)k'1

Then k^ :£ a , and there exist exactly k^ F.S.S. of (3.1) of the form
s(p;n) , and p = <» . Each represents asymptotically a solution of (3.1) as

n—, the k^ solutions so represented being linearly independent.

Furthermore, 9 = 9^ is one of the k^ values satisfying
\Jr .

Go(0) = Y_ (-) J(-9)k.ao,k./V = 0 > (3-40)
j=0 J J

and if no two of the 9^'s differ by integral multiples of l/uj , then the

F.S.S. take the form

;(n) = n "y. + "U "VW +
o l • • • , bQ i 0 . (3.41)

Logarithmic solutions can occur only if some of the roots of GQ(9) differ

by integral multiples of l/co .
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Preview of Proof:

First, we show that p = u> in any purely algebraic-logarithmic F.S.S.

of the difference equation (3.1).

Second, by considering (3.35) as a system of equations in the "unknowns"

Cv(n) , 0 ^ v £ a , we show there exists a finite t satisfying (3.37) and

that k^ £ a .

Third, the existence of F.S.S. is shown by actual construction, using

Frobenius' method, first for the case where none of the roots of Go(0)

differ by integral multiples of l/v , and next for the case where none of

the roots of GQ(9) are equal, but where there exists a subset of roots

differing from each other by integral multiplies of l/<jo . It is then shown

that in these two cases, any purely algebraic-logarithmic F.S.S. of (3.1) can

be expressed as a linear combination of the solutions already constructed,

i.e., for these two cases, there are exactly k^ such F.S.S.
Lastly, we indicate briefly how similar results are obtained when some

of the roots of GQ(9) are equal, and the solutions for this case are

displayed.

Proof:

Let

k rv_*/P
(3.42)

Z=0
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be a F.S.S. of (3.1). By the Euclidean algorithm, we have

rj = ynij + Vj , 0 ^ j s k , 0 ^ Vj s V-l , (3.43)

where r^ , itu are integers, and if is as in Theorem 3.1.J J

We can also effect the decomposition

V-ll j/P-P, „/'cuVk-^P , . V— 0/r . sn P^(p;n) = / n ^(wjn)
j=0

(3.44)

or

V-l

$k(n) = 2] sj,k^n)
j=0

(3.45)

Sj,k^n)
.e r* 7,UJ

n ^(lnnfn^ q. ^(to;n)
1=0 3

(3.46)

where

r.* . . = m, . - p. . + p. . (r* . = 0) ,k-X,j K-i. ,i j, k o,j

'* " 0 " po,k + J/P
(3.47)

and s is a series of the type (3.6) with p = w and 9 an integral
J

inu ltiple of l/o> • Note that some of these series can be zero.
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an it

The difference equation is unchanged by replacing n by ne^n'Ilcu , h

integer, so each of the functions cp^[ne^1TT^"(UJ is also a F.S.S. of (3.1).
An application of Theorem 3.2, or a result of Birkhoff (1930, section 2),

shows, furthermore, that each of the functions

if-1

'h
A

,k(n) = Ze2hnlj/V's 3,^1 <3-48>
0=o

is a F.S.S. of (3.1). We can determine unique constants j , Oih^v-1 ,

where v is the number of non-zero s. v , so that
J } &

v~l

X Ah,j(Ph,k(n) = 3j,k(tu':n) > 0 5 j 5 y-l (3-49)
h=0

since the determinant of the system of equations (3.48) is a Vandermonde

determinant which is non-zero.

But (3.49), when substituted in (3.45), shows that every purely algebraic

logarithmic F.S.S. of (3.1) can be expressed as a finite linear combintation

of similar solutions, each of which can be written with p = uj , and the

first step of the proof is completed.

Not all the P^'s, Osksa, can be zero unless CQ = = ••• =

= 0 , since the determinant

hJ
a

= V.2l5l...ol (3.50)
1 .
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does not vanish. Ilence there exists at least one finite , 0 £ k £ o ,

and therefore a finite t satisfying (3.37). Also, from (3.35), we have

for k = 1,2,...,

W]
o

P ,, 12o+k
G+k G+k

G

= 0 (3.51)

pg+k ~ Xl,kPl + X2,kP2+ + Xg,kPG ' (3.52)

and

aa+]Jw 5 max aj/® > k =
1 ^ j £ g

(3.53)

or

~ (a+k) < max

1 £ j <. o
CVj/aj - ,j , k - 1,2,..., (3.54)

a.nd k, so

Now assume

y(n) ~ n9 bRn , bQ ^ 0 ,
s=0

(3.55)
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CO . CO

y(n+v)~nG 2 t>sn S/^ 2 (s/w-0 )k(-)kvk/k.'nk . (3.56)
s—0 ° k^O

Substituting (3.56) in (3.1) gives

CO CO

n° bsn S 21 (s/tJJ-e)k(")kpk/k-'nk = 0 * (3.57)
s=0 k=0

We can write

YL (s/ci)-9)k(-)\/k.'nk = nT 21 Gm(e-sAu>Tm/tu , (3.58)
k=0 m=0

and so

03
. m

2~ cvy(n+v) ~ nQ T 2_ n my/" 2Z bsGni-s^0"S//'Ju^ = 0 • (3.59)
v=0 m=0 s=0

We must have

m

2~ ^s^m-s^0"3/^ = 0 > m = 0,1,2,... . (3.60)
s=0

If none of the roots, Gk , of Go(0) differ by integral multiples of l/cu ,

then the construction of the k.^ solutions can proceed directly from (3.60).
If some of the roots of Gq(Q) do differ by integral multiples of l/cu , then

the construction of solutions is done by the method of Frobenius, as follows.
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Consider the difference equation

Cy*(n+v) - cn0+TGo(Q) (3.61)
v=0

where

CO
/

ty(n) ~ n9 ps(0)n S'U) ; c f- 0 . (3.62)
5=0

Then the 3^'s satisfy the recurrence relation

m

y i3s(9)Gm_s(0-s/^) = 0 , m = 1,2,..., Po(0) = C . (3.63)
s=0

By putting 9 = 9^ , U h ^ , in (3.62)-(3.63) we obtain the previous

k^ solutions, provided none of the Q^'s differ by integral multiples of
l/'ju . We can solve the system (3.63) to obtain

M9) = Es(0) / J] Go(0-j/o)) , s £ 1 , (3.64)
' j=l

where Es is a polynomial in 9 . Now suppose that

9g = 0-^ + Lj/m , 9j = 9p Lp/'Jb ... 0^+p =6, X^"l ^ k^ , (3.65)

where is a positive integer and
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0 < LL < Lp < . . . < Ly , L0 = 0 , (3.66)

but that 9^-9 is not an integral multiple of l/u> for x+2 £ h ^ k^ .

Define

Ps(0) = M0) |T Go(0-J/W) , s * 0 , (3.67)
j=l

or

LX
Ps(0) - cEs(9) |J G0(9-jAo) , 0 £ s <: Lx-1 . (3.68)

j=s+l

Then 3S(9) is veil defined when 3 = 9h , 1 s h s X+1 • We can write

a ^X.
y Cy^(n+v) = cn tT "[J Go(0-j/u>) , (3.69)
v=0 j=0

X+1
= cn 1^(9) JT (0-0J )J (3.70)

j=l

where

•An) = n9 Y_ ps(0)n"s/<u , (3.71)
s=0

IY(0) a polynomial in 9 .A
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We now differentiate (3.69) h times with respect to 9 , set 9 =

and use the fact that

a&ir
F«(e)

0-9h+1

— 0 , 0 s s 2 L^-L^-l , (3.72)

to obtain the X+l F.S.S.

k— 1 h-i, k^/tu
cph+i(n) = n ^jT (-h)^(-) (In n) g^h(n)n /11 , (3.73)

9, h
X
1=0

-s/uuSf,h^n) - 2_ bs,X,hn b/W > bs,.e,h - ^7 ^s+Lh-L^^9)
0 5 h ^ X •

h+1

(3.74)

Since

_ 9L
°,h,h " SQh

3O(0) i o >

9—0h+1

(3.75)

the above solutions are clearly formally linearly independent, by A-VII.

Let (3.42), with p = u> , be a F.S.S. of (3.1), and let GQ(9) contain

no multiple roots. We wish to show cp^(n) can be expressed as a linear com¬

bination of the solutions already constructed. Denote by ds ^ the coeffi¬

cient of n S^0J in q^(n) . We can write
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a a r. ,/oj
r-Pk(n) = 21 ~T (n )<lj&(«>jn)n > (3.76)

£=0 59X

and substituting this in (3.1), we find that 0 and ds ^ must be such that

r(k+!--n ri'/,JJ f- -m/,„ f- iv-i 4+rrs\ o7 r(vH-L-i) " 7,n 2. 4s,k-* MV-X °m-s ^J+ „ 7 °'£=0 v ' m=0 s=0 o9 v x

0 £ v <: k . (3.77)

For v = 0 , the above equation demands that Gq(9) = 0 . Thus assume

0 = 0^ , since the cases 0 = 0^, 2sh^ X+1 , can be treated similarly,

as can the cases where 0 belongs to any other group of roots of Go(0)

which differ by integral multiples of l/io . If 0 = 0 , where 0^ differs
from no other root of GQ(0) by an integral multiple of l/uj , then the

analysis is quite simple: we must have k - 0 in (3.76), and the result is

one of the purely algebraic F.S.S. (3.41).

One can show by induction, using formula (3.77), that the r^'s cannot

be arbitrary, but must satisfy the relations

0 = r_ = Li < ri = Lj < r0 = Ls < ... < vv = L< £ Lv , (3.78)° JQ 1 0i 2 J2 k Jk x

and k s x > jp < jp < ''' ' av"oa^ double subscripts on the r^'s , it

is assumed that any r^ which corresponds to a Gk..k(n) = 0 is deleted from

the chain (3.78). )
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Now let jo, be the highest power of In n which occurs in any of the

functions <pk(n) , 1 < h £ X+l • Note that the last term in cp>n+^(n) is

W""
n ®h,h(n) > Sh^h(ra) t 0 • (3.79)

91+rv/w
Hence we may select a cp^(n) which contains the term n gy y(n) ,

and subtracting a constant multiple of this function from $k(n) leaves a

9l+rv/w *
series of the same kind whose lead term is either zero or n Ho(n) )

rk < rk . But, by (3.78), r£ must be one of the Lj . Hence we can find
9-,+r*

another cpk(n) with lead term n and subtract a constant multiple of

this series from the above series so that the initial power of n in the

I k "X"
lead term is again diminished, to n . This may be con-

tinued until cpk(n) is reduced to

$k(n) = fk(n) + gk(n) , (3.80)

where Sk(n) is a linear combination of the 9k(n) and

QT o rr_ J<s> _ r

fk(n) = n 1 y> (in n) q^(tu;n)n " , k - max|k,jj,J , (3.81)
Fl

also satisfies the difference equation. It is our intention to prove that

any F.S.S. of the form (3.81) must be identically zero.

Denote by d_ . the coefficient of n S^'V in q„(n) . Since d = 0 ,
O y Xt X> K5 j (J

the result of writing out (3.77) for (3.81) and k = v = k is



k-1 7 03 , m /• r _sr^/to ^7" -m/io V 7 5' „ U , I
Z_ n Z_ n Z_ ds,k-.£ FT Vs (° +
g—c\ c=n "s^^'v ^i-0 m=0 s=0 gg

UJ

= 0 , (3.82)
9-9,

rk-]/^and setting to zero the coefficient of the highest power of n (n )

gives

do, 1 ^o(®+rk-l/w) e=0]_
= 0 (3.83)

which is only possible, since G (9) has no double roots, if d , = 0 .' o jl

Hence, by (3.7), q-^(n) = 0 . The sum (3.81) becomes a sum from & = 2 to k.

Now write out (3.77) for v - k-1 = k-1 to show that qg(n) = 0 . Eventually,

we arrive at q.q(n) - Qg(n) = ... = H^(n) = 0 , or ~ 0 > so $k^n)
is a linear combination of the cp^11) .> 1 ^ h s x+l > an(i hence k s jjl .

Thus, if none of the roots of GQ(0) are equal, there exist exactly k^
algebraic logarithmic solutions of (3.1).

The same analysis can be conducted when some of the 9^*3 are all°we<i

to be equal, and the construction of the solutions in this case again is

analogous to the procedure used for differential equations, see Ince (1956,

Ch. XVI) or Forsyth (1902, Ch. II). Here we simply display the solutions,

since their forms will be of importance later.

Let 9^ be as in (3.65 )-(3.66), and, furthermore, let it be a root of

Go(0) of multiplicity 6^ s 1 . Define
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sj = 6l + 62 + ••• + 6h , 6* = 0 (3.84)

The 6^ F.S.S. corresponding to 0^ are

1- (-jL(-)'
/ \ °h K— v /-. v

?h,j-s* ,+L = n V:— (ln n)
n-j- v=0

\J"V n~s/t0 "Si- R (0)
s=0 89

v s
e=e>

h-1
* j * 6?-l (3.85)

Note that

^ MQ)80J
f 0 , j 2: , (3.86)

since the multiplicity of (Q-^) ^o^^ is exaci:ly ^h-1 *

The linear independence of the above solutions can be shown by the same

arguments used by Ince, p. 402, and the proof that there are always exactly

k^ such F.S.S. requires the same type of reasoning as when the roots of
Gq(0) are simple, but the details are considerably more messy.

Theorem 3.1 is now applied to show that the F.S.S. constructed above

represent asymptotically k^ linearly independent solutions of (3.l), and
the proof of Theorem 3.3 is complete.

Definition 3.6

A Birkhoff set jy^n)j f°:'C equation (3.1) is a canonical set if
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yh(n) = chMn^n^ [L + °^1)] > n—><*> * ch ^ 0 > (3.87)

where

Qh(n) 0h .iv
M^(n) = e n (in n) , (3.88)

a positive integer,, and = Mj for n = 1,2,3,..., if and only if
h = j .

By the construction (3.85) and Theorem 3.1, every equation (3.1) has a

canonical set, and so does the equation adjoint to (3.1). No two members of

a canonical set display the same asymptotic behaviour as n—>ca , so not

I 2 2 1
every Birkhoff set is canonical, e.g., <l,n ,n +nS is a Birkhoff set for

yn - 3yn+i + 3yn+2 - yn+3 = 0 (3.89)

but not a canonical set, as is ■! l,n,n^ I or l,n+l,n^+nj .

Also, let S denote a subset of a canonical set, all the members of

which correspond to the same Q(n) and to a group of 9^'s which differ by

integral multiples of l/uj . Then S contains a smallest member z-^(n)

and a largest member Zg(n) , i.e.,

lijn 0 , (3.90)
n_^ra 7].(n) n—><° z2^
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where y-|(n) is any member of S other than and yg^) is any member

of S other than z^ •

For the construction (3.85), and Zg correspond to F.S.S. cp^ p(n)

and cpv+1 . (n) , respectively, andX

zl(n) = cin 1[1 + oC1)] > (3.91)

lsM - + o(l)] .

Q(n)

(3.92)

(in the general case, a term e will appear on the right-hand side

of (3.91)-(3.92).)

Theorem 3.4

Let | ) | a Birkhoff set for (3.1),

Qh(p;n)
yh(n) ~ e sh(p;n) , 1 5 h <: a (3.93)

Then:

i) T,/ \ Q('JJj^l)/ \D(n) ~ e /s(c«;n) , (3.94)

where in Q(n)

jj "A
"o = > <==(-) e- /o0j0 , VS -<*! J

^3
<JU

(co-2) (cl,cr/2co,a) " ^c2,o/co,a^] >•':>
■ (3.95)

45



where c. is as in (3.2), and s(to;n) is free from logarithms;J > o

ii) Q(to;n) = 2] \(p;n) ;
h-1

(3.96)

iii) yj(n) = Th(n)/D(n) ~ e s£(p;n) , 1 <: h £ a , (3.97)

are a set of Birkhoff solutions for the equation adjoint to (3.1).

Proof:

The proofs of i) and iii) are purely computational, i) following from

the difference equation for D(n) , (A. 15). No logarithms appear in s(to;n)

since, by Theorem 3.2, the F.S.S. of a first order difference equation can

never contain logarithms.

To prove iii), note that from A-VI,

Th(n+j-l)/D(n+j-l) X yj(n+h-l)
i o

1 6jh
a

1 ' (3.98)

where

e.1h -

1 > J = h ,

10 , h > j ,

(3.99)
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and so

y^n+j-i)
u

= D(n)" (3.100)

Since the y^(n) can be represented by the F.S. (3.97) which are

formally linearly independent, by (3.100), it follows that they are Birkhoff

solutions.

We close this chapter with a theorem on exponential stuns.

Theorem 5.5

Let

n

S = S(n) = 21 f(k) > n s 0 > (3.101)
k=0

where

f(n) = e^^n^v(n)[l + o(l)j , n—, (3.102)

v(n) - n9(In n)r , (3.103)

r is a non-negative integer, and Q(n) is given by (3.5).

Let p* be the first non-zero element in the sequence jlte ,

h = 0,1,2, ...,p and p* =0 if all the Re p^ are zero.



Then:

i) if |P* < 0 , we can write

A = ]>_ f(k) ,
k=0

and

S(n) = A + 0 ■je<^n+"'"^nv(n) j ,

ii) if n* > 0 ,

S(n) = 0 je^n^nv(n)j , n—»» ;

iii) if n* = 0 ;

;(n) =

0 jnv(n)j , Re 0 > -1 ;

|(in n)r+1J , Re 9 = -1 ;
0(1) , Re 0 < -1

Proof;

We can write

f(n) = ce^^n^v(n) [l + K(n)J , n s 1 ,

where K(n)—>0 as n —>" .
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For [a < 0 j the series converges absolutely. Define

T(n) = f (k) . (3.109)
k=n+l

We have

e-Q(n+l)T(n) | ^ jc| g(k)k-v|1 + K(k) | (3.110)
k=n+l

£ c' 2_ g(k)k_V > (3.111)
k=n+l

where

gM = |v(k)| kveRe Q<kbRe Q<ntl> (3.112)

and we take v real and > 1

Wow

dg(x)
=

dx
= g(x) j Re Q'(x) + - (—— + 9 + v) t . (3.113)

( x \ In x J J

But g(x) ^ 0 for x > 1 , and any zero of the quantity in brackets

above cannot depend on n . Since g(x)—>0 as x—} it follows that g

is monotone decreasing, x > xQ , or, for n sufficiently large

g(k) s (n+l)V|v(n+l) | £ MnV|v(n)| , k ^ n+1 , (3.114)
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and so

e-Q(n+1)T(n) £ H | v(n)| nV V k"V
k=n+l

(3.115)

CO

_ I / \ | v P -v, Mnv(n)s M I v(nj| n / v = *—Lx "ax = - — ^ . (3.116)
n (v"1)

which gives i).

The result ii) follows by a simple majorization, while for iii) it

suffices to consider

n

Xi
k=l

v(k)| ^ (in n)1 kRe ^
k=l

(3.117)

When Re 0 & 0 , the series on the right is easily bounded. Otherwise

we use

n
Re 0 _ , . p Re 0y k < 1 + / x dx , Re 8 < 0 . (3.118)

k=l 1
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IV.

By using the asymptotic theory of the last chapter, we can now apply the

general theory of computation by backward recursion, as developed in Chapter

II, to difference equations of the kind (3.1).

Throughout this chapter, we assume the difference equation in question

to be (3.1).

Theorem 4.1

There exists a canonical set {c?i*(n)j f°r the equation adjoint to (3.1)
and an integer u s 1 such that

lim

m—>
cp*(m)/cp*(m)

^h ^0, lsh^u,

0 , u+1 s h s a

(4.1)

Furthermore, if u = 1 then for some n* , 0 ^ n* £ cr-1 ,

lim An(in)//An^(m) = y(n) , n ;> n* ,
m—

(4.2)

m

exists, is not identically zero and satisfies (3.1), while, if u = 2 , then

, mg can be chosen so that (2.35) holds for some solution, yp(n) , of

(3-l). Furthermore, y^(n) , the function to which the algorithm converges,

is independent of the particular set cp,*(n) •



Froof:

Equation (4.1) is obvious, since, clearly, the absolute value of the

ratio of any two canonical solutions must either approach zero, a constant,

or infinity. Let y^(n)j- be that (unique) fundamental set for the original
equation (3.1) which is obtained by letting (n)/D(n) = cpj(n) in (A.IS),
then solving for y^(n) for n £ cj-1 , and finally using (3.l) to compute

y^(n) for all n s 0 , 1 ^ h ^ cr . We have

An(m) = 21 <(m)yh(n)
h=l

(4.3)

and the statement for u = 1 follows immediately. Note that An*(m) cannot

be zero for more than a-1 consecutive values of n*, for it satisfies (3.1)

and is not identically zero. Since An(m) is fully determined by the condi¬

tions (2.2), it is independent of cp^(n) , and so is yp(n) .

Now

A (nip) = Rh(nu )
1 Q'e^^-^mp^l + o(l))
n iQ(mg) ±qs , x1 ae wq (_1 + o(l)J

(4-4)

where Q , 9 are real, [ or J = Cp , and in Q is zero. Also we may

assume -tt ^ pp < it , or else replace iQ by iQ 1 2rrri , r a suitably

chosen integer.
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One finds

'(mL) | = 2cl
. f^(^)-Q(ml) , 0 „
i 2 + g (ln ml)sm + o(l) . (4.5)

First, assume Q(nt) ^ const., = 0 , so

p 1 +
1-r

Q(m) = p-rm p ,2^k^p,p.k^0
r=k

(4.6)

Let

mg

k-ll

+ Km-j_

k-1

K =

m-

1-k"

,L + Km-^ + 0(1) ,

** C1 + p

) (4.7)

and [x] means the largest integer not greater than x . We have

Q(m2)-Q(m1) P
=?I ^r

r=k

1 + lzL 1 + k£
P P

mg - mL

k-r

- iK Z Pr C1 + lF) ™1P (l + °(nIL/P))
r=k

^ K (l + + 0(m£l/p) = + | + 0(mi1/p) ,

(4.8)
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so

lim | A(ra]_) | = 2c± , (4.9)
—> »

which assures us that (2.34) has a unique solution ttj , tjqj an(i also that

(2.35) holds.

Next, we note that if Q is constant, we cannot have 9 = 0, else cpg

is proportional to cp* . Thus, let

nig = J^m^e17^^ = m-je77/'^ + 0(l) . (4.10)

Then (4.9) again holds.

Lastly, if p,-^ f 0 in Q , let nig = m-^+r, r a positive integer.

IaG^) | = cx |elriJ,]- - 1 + o(l) | . (4.11)

irMn . . .

Since r can be chosen so that e f 1 , (4.9) again follows, and,

by Theorem 2.4, the proof is complete.

Theorem 4.2

Let there exist a canonical set f°r (3.1) such that one of its

members, say y^(n) , has the following property:
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lim y1(n)nK/yh(n) = 0 , 2 <; h £ a ,
n —>c°

(4.J5)

for all K . Then

lim An(m)/An*(m) = y1(n)/y]_(n*) (4.13)
m—

for all n 2: n* and some n* , 0 £ n* :£ cr-1-

If, in addition to (4.12) we are given the series

CO

1 = H l^ioo > (4-14)
k-0

where

lim kKL^y1(k) = 0 (4.15)
k—>co

for all K , then the computation of yp(n) by backward recursion based on

(3.1) and (4.14) converges.

Proof:

Note that y^ , if it exists, is unique, apart from a constant multiple,

by A-VII. Since
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yh(n) = cheQh^ h^Ln n)Ph C1 + °^1)) (4.16)

we have, by (3.97)

Th(m)/T1(m) = (yL(m)/yh(m)) 0(m h) , 2 s h 5; a . , (4.17)

for some real , and the first part of (2.12) follows.

Now, from (4.15), we deduce

. -Re Q-| (k) .q

1^ sMe k , k>0, (3 = -ch-2-Re 0L , (4.18)

so

, Re (Qh(k)-Q1(k)) Re 0.+B p.PhWl^Z6 k (ln k) , (4-19)
k=l

and we may apply ii) of Theorem 3.5, since (4.12) implies that ^o, 1 ^o,h "

The result is that we can determine constants so that,for m > m ,

|sh(m)| £ Khyh(m)m h /y1(m) . (4.20)

Thus, by (4.17)

lim RhSh = 0 , 2 <: h £ a (4.21)
m—> co

and the proof is complete.
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The condition (4.12) is rather stringent, and for a = 2 or 3 it can be

weakened considerably. We have, in fact,

Theorem 4.3

Let a = 2 or 3 , and let ^y4(n),y2(n) j be a fundamental set for (3.1)
if a = 2 and let j y-j_(n),y2(n),y2(n) j be a canonical set for (3.1) if
a = 3 .

Let

lim nL^(ln n)a SpOO^y^n) = 0 , 2 ^ h £ a , (4.22)
n—

where L(cr) is a positive number depending only on cr , L(2) = 0 , L(3) = 1

Then for some n* , 0 s n* s <j-l ,

lim An(m)/An*(m) = y1(n)/y]L(n*) , n s: n* . (4-23)
m—>

Let, in addition to the above, (4.14) hold, with

1^ = 0 (eQ(kV* ) (4.24)

for some Q(k) , a such that

eQ(k)kL(a)+<*+!(ln k)a-lyi(k) = q(i) < (4>25)
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Then the calculation of y-^(n) by backward recursion based on (3.1) and

(4.14) c onverges.

Proof:

We have, from Theorem 3.5,

Ah + o(l) , convergent,

0 ^e^m ^ma+^ln m yj1(m)^ > otherwise
Sh(m) = < (4.26)

It remains only to show that

Rh(m) = 0 ^mL^ln mCT 2y1(m)yyh(m)^ , 2 ^ h <; a . (d-.27)

Then (2.12), and hence the Theorem, will follow from (4.22) and (4.25).

For ct = 2 , (4.27) is obvious, since

vh-1
Th(m) = (-) y3_h(m+l), h = 1,2 (4.28)

Let, then, a = 3 . It suffices to consider only R2 • Wow jyh(n)j
is canonical, so, by the construction of Theorem 3.3, we can write

yt(n)
Ph(n)

1 + + ^ +
In n (In n)c

(4.29)

Ph(n) = Qh(n) + ln n + Ph ln(ln n) + ln ch •h h 'h (4.30)
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Since

ln(n+l)
"J -J

In n 1 - — +
L n In n

(4.31)

we have

A Pu(n)
yh(n+l)/yh(n) = e n h 1 + 0

n(ln n)c
(4.32)

where An is the forward difference operator, Milne-Thomson (i960). Thus

Rg(n-l) = - y1(n)A(n)y/[y2(n)B(n)] , (4.33)

A(n) = 1 - e
Sn (piW-PjOb)

1 + 0

n(ln n)2.
(4.34)

B(n), . An(P2(n)-P3{n))n ) = 1 - e v 1 + 0

n( In n)c

= 1 _ eAn (®2 ®3 ^ ^2 "^3^ f 1
1 + —-—— + —-—— + Of

n n In n n(ln n )'~y

(4.35)

^ ^ol ^ ^02 ' ^en (^-22) shows that |j, < (j,o2 and so R2(m)-—>0 .

Hence assume p0-]_ = |ro2 . If j- p03 , then pQp < pQ3 and the leading

term of "both A(n),B(n) is unity, so again, "by (4.22), f^m)—>0 . Hence

assume M.Qp = p.03 . Then A(n) is bounded, and B(n) is asymptotically

smallest in the case where Q2 = % > ~ ®3 * I"hen it approaches zero as
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l/(n In n) , since we cannot have, furthermore, ^ ~ P3 • Thus (4.27)

follows, and R^ , R^S^ , h = 2,3, approach zero. This proves the theorem.

We conjecture that Theorem 4.3 is true for. all a , i.e., that there

exists an L(a) for (4.22) which will insure (4.23) and (2.7).

For a = 2 , (4.23) follows from a result Gautschi (1361) proved for a

second order difference equation with arbitrary coefficients, and also for

this equation, Olver (1964) has determined other conditions on which

will guarantee the convergence of Miller's algorithm, based on (4.14), to

yx(n) •

We now present several examples of applications of the previous mate¬

rial.

Let

03
(J

y(n) = J e ^ ^^tndt , n = 0,1,2,... , (4.36)
0

CT-1

P(t) = 21 artr * CT * 2 • (4-37)
r=L

A single integration by parts shows that y(n) satisfies the difference

equation
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.-1
CT

y(n) - (n+1) vayy(n+v) = 0 , aa = 1 . (4.33)
v=l

From de Bruijn (1961 , p. 119) we have

y(n) r(^)
exp

1 - i 1-2 1
P-2n ° + p3n a -i- • • • + Hana

M2 = " aa_ia

p3 (l- i) a-2

-1

q(a,n), n—*■» ,

(4.39)

When a = 2 , y(n) is essentially the parabolic cylinder function

U(n+^a^/ 42) , the theory and computation of which are discussed by Miller

(1964).

Wow,, by Birkhoff (1930, section 2) , we know there exists a fundamental

set for (4.38), yh(n)} > where y^ has as an asymptotic expansion the F.S.
on the right of (4.39) with n replaced by ne^17^5"1""!) , 1 < h ^ a . This

gives a F.S.S., so there are no more. Furthermore, by Definition 3.6,

/ yj1(n)| is canonical. We can identify y(n) with y^(n) .

We have

|yi(n)/yh+i(n) I = exP |2|aa-il(n/a) ^h^) 1 + °(n-l/a> , (4.40)
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fh(Y) = sin(Y-hn/a) sin(hrr/a) , Y = arg aQ_1 . (4.41)

For | Y | < tt , f^ has zeros only at the points hrr/cr and hrr/cr -tt, so

f^ is of one sign for y "between these points. Since

fh(0) = - sin2(hn/a) < 0 , (4.42)

we have

f^Cy) < 0 , hrr/a -n< y < hrr/a (4.43)

or

fh(y) < 0 , -rr/a < Y < Tr/cr , 1 £ h < a-1 . (4.44)

and so, for these values of arg aQ_p , condition (4.12) of Theorem 4.2 is

fulfilled.

Let

CO

ep(t) = r(1+1/CT) ^ . (4.45)
k=0

Since the left-hand side is an entire function of order a-1 , we have,

"by Boas (1954, p. 10) ,

|Lj< C k"k/a , k s 1 , (4.46)



so

5 Mik"lH1,/a 2 exp
k (1+ln a) l+Mgk

-1/c
= o(l) , (-1.47)

for all K •

Also

zL Lkyi(k) = 21 VM = 1
k=0 k=0

(4.48)

Thus, by Theorem 4.2, the computation of the integral (4.56) by backyard

recursion based on (4.38) and (4.48) converges when |arg aa_p | < rr/a .

Our next example is a class of hypergeometric functions. (For notation,

see Erdelyi et al, 1953; v. I.) Let

y(n)
/ n, .

(-) X (g+i)

Q+l

JJ (b'n
n ,]=i

n+a.

M2n « Q+2 Q+1Vn+b1,
IT <»j)n
j=l

•}n+aQ+2
.,n+bq,2n+Y+l

(4.49)

where Q,n are non-negative integers, p+1 , y , a- , b. are complex con-

stants, (aq+2 = P+l) > none of which are negative integers or zero, and \

is a complex variable, finite, -f 0 , |arg(l-l) | < n •
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Then (Wimp (1966)) y(n) satisfies the difference equation

Q+2

K + Nv/x] y(n+v) = 0 ,
v=0

(4.50)

where MQ = 1 , WQ = wQ+2 = 0 > anti

(-)Q(2n+Y)q+3 ]T (n+Y+v-a. )
Q+2

r(Q+3-v)(2n+y+v)v+1 j]~ (n+a.)
j=l

Q+2

/ v-Q-2.2n+Y+v.n+Y+v+l-a, ,...,n+Y+v+l-an,0
V" F [Q+4 Q+3\ 2n+Y+2v+l,n+Y+v-ap . . . n+Y+v-a,-^

1) , (4.51)

for 1 ^ v < Q+2 and

Q

N

(-) (2n+Y)q+3 JJ (n+Y+v+l-bj)
= izi

v Q+2

F(Q+2-v)(2n+Y+v+l)v j j (n+a^ )
j=i

/ v-Q--1.2n+Y+v+l.n+Y+v+2-b1 .... ,n+Y+v+2-bn
\S p ( L HQ+2 Q+l\s2n+Y+2v+l,n+Y+v+l-b1,...,n+Y+v+l-bQ

(4.52)

for 1 ^ v ^ Q+l .

Note that (4.51)-(4.52) are terminating hypergeometric functions, and

for any value of v they are rational functions of n . Thus (4.50) is of

the form (3.1) with w = 1 ,
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A result of Wimp and Luke (1962, the Corollary on p. 7, with m = 0 and

then a) = 0 ) shows that

(Y\
k=0

1 = zL • (4-53)

Since

Mv = ( Q,2)v + 0(n_1) , n->co , (4.54)V •

4(-Q)V-l 1
Nv = r X + oCn"1) , n-^co (4.55)

there are two linearly independent solutions of (4.50) with the "behaviour

y1w~<-)n[c1.u)] n) , n—, (4.56)

y2(n) ~ (-)n[fe(X)] s2(n) > n->« (4.57)

see Wimp (1966), where

"12 2

CL(x) = [l - A y C2A) = [l + A , (4.58)

and we define

Vl-X = 1-X| e , 0 < arg(x-l) < 2tt . (4.59)
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It can be verified that maps the X plane cut along the real axis

from 1 to 03 , (i.e., |arg(l-\)| < rr ) onto the interior of the unit circle

|\| < 1 , while £2 maps the cut plane onto |l| >1 . Thus for the values

of arg X considered,

I Cp (^) I > (4.50)

and so (4.12) holds not only for h = 2 , but also when y^ is any purely

algebraic-logarithinic solution of (4.50). We now proceed to show that all

the remaining members of any canonical set {y^11)]" "to which yp>y2 belong
are purely algebraic-logarithmic.

Consider

Q+2

QM(m) = (-v)^ , 0 ^ m s Q+2
v=m

(4.61)

Q+l
Q■N (m) = (-v)mNv , 0 £ m s Q+l

v=m

(4.62)

Using (4.51) in (4.6l), interchanging the order of summation and evaluat¬

ing a 2^1 of unit argument, we have.

Q
(-) m.'(2n+Y)0+3 . (Q+2-m) <^(m) = 1

j=l
(n+a.)r(Q+3-m)

J

Q+2

~]~ (a^-Y-m-x)
.1=1
(2x+y+m)m+1

(4.63)
x=n
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(Q+2-m)
where Al is the forward difference operator, see Milne-Thomson

A

(i960). But the quantity in brackets above may be decomposed into a poly¬

nomial of degree Q+l-m in x , the indicated difference of which is zero,

and a sum of terms

m

d./(2x+Y+m+j) (4.64)
j=0

The d- may be calculated by multiplying the bracketed quantity in (4.63) by

2x+y+m+j and letting x—e-- (y+m+j )/2 . Then substituting (4.64) in (4.63)

gives

%(m)

y+m+r
.m-i-Q . . . r ( n+ o(-) (2n+y)D,_ m (-m) V d

Q+2

yQ+3 v— j 'r
r!

Qi+ Y 2 P) TT (Y+m-r-2ap
j=l

Q+3^ £=q rI r (n+ + Q+3 ^2 I | (n+a.) V 2 J
j=l J

(4.65)

and an order estimate for this sum is easily obtained by using

r(n+a)/r(n+p) - nQ ^ j^l + 0(n ^)J . (4.66)

The result is

%(m) = (")
Q+rn ra-Q-2 (m)

n
T

fQ^
(Y"2aj) ' £l + 0(n 1)j . (4.67)
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Similarly; one finds that

4(_)Q+\m-QA(m)

0N(m)

C Q

]~[ (Y+2-2V.) [ [l+0(n_1)
j=l

} 0 s m s Q ,

0(l) , m = Q+l
(1.68)

Next, we have

1 y () (-v) / _ \k v mv 'm
' " Z_ ^ x-m (4.69)

m=0

the B's being Bernoulli numbers; see Norlund (1954; p. 150).

We may use the above results to finally arrive at the estimate for

in Theorem 3.3;

n\ = 1

Q

17 (v+2-2b.)| [l+0(n~ )
J=l

; 0 ^ k £ Q ;

-Q-l
0(n ) ; Q+l ^ k 5 Q+2 .

(4.70)

Thus, in Theorem 3.3 we have p=l,T=-Q;kj=j,k^=Q, and

G,o(0) = X Xt1 X yX TT (v+r+2-2bs>»] • /-\ •

(-9), X (-JL X

j=0 J ' . r=0

Q

s=l

= 4X <-) TT (Y+0+2-2bs) ;
s=l

(4.71)

and so
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0h .= 2bh - y - 2 , h = 1,2,...,Q . (4.72)

According to that theorem, there are exactly Q algebraic-logarithmic

solutions of (4.50), and, if none of the 0^ differ by integers, these.are

of the form

yh+2(n) = n h 1 + 0(n 1) , HhiQ . (4.73)

Otherwise, logarithmic terms may appear.

We have thus determined a canonical set for (4.50), A result

of Luke (1968), which is a generalization of Watson's result fora2Fp (see

Erde'lyi et al (1953); v. I, p. 77, formula (16)), enables us to identify

y(n) with a constant multiple of y]_(n) . Lastly, by examining Mq+2 as

given by (4.51), we see that if

a ft -y-Q"2,-Y-Q-3,..., 1 ^ j <; Q+2 , (4.74)
j

then Mq+2 ft 0 for n :> 0 . If this condition is satisfied, as well as the
conditions immediately following (4.49), then Theorem 4.2 may be invoked:

the hypergeometric functions (4.49) may be computed by backward recursion

from (4.50) and (4.55).

In particular, we have demonstrated a way of computing Gauss' function

wherever it is analytic, i.e., for |arg(l-l)| < tt , as is seen by letting

Q = 0 , a-^-a, ag = (3+1 = b, y+1 - c in (4.49)-(4.52):
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y(n)

. .n n, . , .

(-) X (a)n^b^n
(c-1)2n

. n+a,n+b
2 ll 2n+c

(4.75)

M = 1 j M, = -
o ' 1

(2n+c-l)[2n^+2n(c+l)+c(a+b+l)-2ab]
(2n+c)(n+a)(n+b)

_ (n+c+l-a)(n+c+I-b)(2n+c-l)(2n+c )
_ (2n+c-l)(2n+c)

(n+a")(n+b)(2n+c+2 )(2n+c+3) ' ^ (n+a)(n+b)

(4.76)

To further illustrate the power of the method, we compute the function at a

point on the circle of convergence of its Taylor series

X = enl//3 = (1 +V3i)/2 , (4.77)

with a = 2/3 , b = 1 , c = 4/3 . It is known, e.g., Erdelyi et al (1953,

v. I, p. 105 (55))

f2/3,1 rri/3\ ... eni/ S2nr(l/5)
9f(2/3 )c

0.88331 9376+ 0.50998 4679i .(4.78)

Computation of y(o) by backward recurrence using (4.50), (4.53) yields the

following table:
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r (m) e — v(o)-r (m)
m o ' m J ^ ' 1 ov '

5 0.88233 8541 + 0.50945 3036i (9.2 + 5.3i) x 10~4

9 0.88331 4192 + 0.50998 1687i (5.2 + 3.0i) x 10~6

13 0.88331 9347 + 0.50998 4663i (3.0 + 1.8i) x 10"8

and ro(l5) agrees with y(0) to all the places (4.78).
The series for y(o) converges only conditionally, Knopp (1947,p. 401),

but this is irrelevant, because the Miller algorithm will work whether the

Taylor series converges or not, as long as |arg(l-l) | < tt , and, as is easily

seen from the formulation (2.10), the convergence is exponential,

y(n) = rn(m) 1 + O^xf) , . (4.79)

In this case

^(X) = 1(2 -^3) , |Cl(x)| - 0.268 ••• . (4.80)

As our final example, we take the confluent hypergeometric function

l6Cb) (6)
y^(n) = B—J1 Y(n+6,6+l-b;X) . (4.81)

(Our notation and subsequent analysis draw heavily on the material contained

in Erdelyi et al (1953, v. I, Ch. 6).)

y^(n) satisfies the difference equation
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y(
(n+l)[(2n+6+b+l)+x] . (n+l)(n+2) - .

n) y(n+l) + A[) ~A y(n+2) = 0 , (4.82)(n+6)(n+b) (n+6)(n+b)

and

(a) - ♦ 0(n"4)
JL
'2 ■

(4.83)

arg X I s tt , V(x) ='ffr\^+b^_1,e^2/ T(5)r(b) , (4.84)

1 = yi^k^ ' targ Xl < TT •
k=0

(4.85 )

Another function satisfying (4.82) is

(On
yp(n) = —— §(n+5,6+l~b;X) ,n

2rr
r(b)r(5+l-b)v(A}n(6+b)/s " [l+0(n"2)| ,

| arg A | ^ tt

(4.86)

(4.87)

It is thus seen from Theorem 4.2 that the computation of y-j_ by backward

recursion based on (4.82), (4.85) converges for |arg X | < n • To illustrate

this, let 6 = b = \ , so

yL(0) = X^(|,l;X) = x2ex/2KQ(x/2)/^ , (4.88)
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yL(l) = ^ Y(3/2,l;\) - X ^V%(l/2,1;X) (4.89)

Vtt dX "x^eX/2Ko(x/2)
3 /2
^ eX/2[-K1(x/2)+K0(x/2)(l+l/x)] . (4.90)

For X = 4 , standard tables give

yL(0) = 0.94960 8012 ••• , yL(l) = 0.04171 2616 (4.91)

Taking m = 10 in (2.2) to (2.6) yields

To(l0) = 0.94961 1302 • •• , rL(lO) = 0.04171 2759 • •• , (4.92)

- 7
with approximate absolute errors of 3.3 x 10 and 1.4 x 10 , respec¬

tively. It is interesting that the difference equation (4.82) serves to

compute Ky , while the usual recursion relation does not.

If arg X = tt , then we can define

cpf(m)

rp2 (m)

c„2im21XI 2m e [l + 0(m"2)

mce-2imiul2 1 + 0(m )

(4.93)

(4.94)

and Theorems 4.1 and 2.4 apply, with p = k = 2 , ^ = -4|Xl , = 0 , and

nu m-^ + TTm2l/^J) (4.95)
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Thus both the functions (4.81) and. (4.86) can be computed in this case,

provided that suitable normalization relationships (or initial values) are

known, since it is clear the series (4.85) will, in general, no longer siiffice.

An even more efficient algorithm for the calculation of the Y function

can be based on the third order difference equation satisfied by the functions

_ (-)' (2n+a-l)r(n+a-l) 31 f l-n,n+a\J F(a)r(6 )r(n+b) U23^A a,6,b J (4.96)

r(a) (2n+a-l)r(n+a-l)\n+a — (\5~aY(n+6,6+l-b;\) 1 , (4.97)
dln l >

(see Wimp (1966, 1967) and Luke and Wimp (1963)). This is because (4.96)

behaves as

1/3 2/3
/ \ d -3\ n
z(nj = c n e 1 + 0(n"l/3) n— (4.98 )

for some c , d (independent of n ),.|arg A. | < 3n/2 . (A canonical set for

the equation is readily obtained by replacing n above by ne'"^"1 ,

h = 1,2 . )

In fact, the hypergeometric functions discussed in the above three ref¬

erences, which are of the form

P+1,1 fGQ+2,P+ll A
l-n,n+y+l,b|

Up, p^~l
Q

, n - 0,1,2,... , (4.99)
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can all be computed, by Miller's algorithm, using the recursion relations and

normalization series given by Wimp (1966), provided |arg \ | < tt for

P > Q+l , and jarg(l+l"P) | < n for P = Q+l , in which case (4.99) is

related to (4.49). For P > Q+l , the difference equation for (4.99) has Q

algebraic-logarithmic solutions with the same values of 9^ as given by

(4.72), plus an additional P+l-Q anormal F.S.S.

yh(n) ~ chndh exp j-(P+l-Q)(n2\e2hTT1) 1 J } h = 0,1, ...,P-Q , (4.100)
while if P < Q , then p = to = 1 in all the F.S.S. of the difference equa¬

tion. Thus the recursion relation for (4.99) has canonical sets whose com¬

ponents exhibit widely varying behaviour, depending on the relation between

P and Q , and the equation may be expected to furnish a number of addi¬

tional interesting applications of the theory developed in this work.
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APPENDIX

Here we set forth the notation used in the body of the thesis, and list

some frequently invoked results from the theory of linear difference equa¬

tions .

For determinants and matrices, we use the notation

all

*21 22

aTl «T2

aIt

a,2t

att

(A.l)

V,J ) n

all <*12

a21 a22

«Tl aT2

• • •

alT

a,2t

a
tt

(A.2)

a. , always denoting the element in the row and h^*1 column of the de-
J >n

terminant or matrix.

Let cpn , be (complex-valued) functions of n = 0,1,2,... . We write

<Pn = °Un) > (A.3)

if \jfn f- 0 for n > nQ and if a positive A exists for which
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krAlb A > n > no , (A.4)

and

9n = oUn) , n-^co , (A.5)

if, given e > 0 , there exists an N(e) s n such that

l^nAnH e for a11- n > N ' (A.6)

Let p he an integer ^ 1 .

^n ~ tn c +c-j n ^P+c^n 2/^o 1 c > cQ f 0 > n—>a > (A. 7)

means that

V»n - X =k*"k/P = 0(n-<r+3-Vp) , n
k=0

(A.8)

for each r = 0,1,2,...

Occasionally cp , will he functions of a complex variable X belong¬

ing to some sector S in the complex plane. Then

cp(\) = 0(j(x)> |x|~, XeS , (A. 9 )

etc., are interpreted similarly. See Erdelyi (1956) or de Bruijn (1961) for

details.
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Suppose we have a set of (complex-valued) functions >

1 ^ h ^ a , defined for n = 0,1,2,... . The functions are called linearly-

dependent if and only if a relation

cLyL(n) + cgy2(n) + ••• + c^Cn) = 0 , n = 0,1,... , (A.IO)

holds for some constants (independent of n ) c. which are not all zero.
J

Otherwise, the functions are linearly independent.

Good sources for the following material are Gautschi (ca 1962), Milne-

Thomson (i960) and Norlund (1954).

A-I. The functions |cp^(n)| , 1 ^ h < a are linearly dependent if and only
if

a

D(n) = cph(n+j-l) = 0 , n = 0,1,... . (A. 11)

A-II. The functions in any subset of linearly independent functions are

linearly independent.

A-III. For any integer k s 0 , the difference equation of order o(^ l)

a

Cv(n)y(n+v) = 0 , n = 0,1,2,..., CQ = 1 , Ca(n) f 0 , (A.12)
v=0

possesses a unique solution satisfying the conditions
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y(3c+v) = a , v = 0,1,2,... ,0-1 . (A. 13)

A-IV. Equation (A.12) possesses a linearly independent set of solutions

| yh(n)J , 1 ^ h £ a , called a fundamental set, and any solution of (A.12),
such as (A.13), can be expressed as a linear combination of these functions.

A-V. Let

D(n) = I yh(n+j-l) (A.14)

Then

D(n+1) = (-) D(n)/C_(n) , n = 0,1,2, (A.15)

A-VI. The equation

y~ Ca_v(n+v)y*(n+v) = 0 , n = 0,1,2,... , (A. 16)
v=0 ;

is called the equation adjoint to (A.12), and the functions T^(n)/D(n) ,

1 £ h ^ a are linearly independent and satisfy (A.16) where

Th(n) - (-)
h-1

yL(n+l),'•• yh_1(n+l),yh+1(n+l),•••,ya(n+l)

(n+a-l), ••• yh_1(n+a-l),yh+1(n+a-l),•••,ya(n+a-l)h+lv

(A.17)
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Thus

a

y~ Th(n)yh(n+r)/D(n) =
h=l

1, r = 0 ,

0, 1 ^ r £ a-1 ,

_1/CCT(n) , r = a

(A. 18)

A-VII. Let the functions {^(n)} > 1 ^ h ^ a , be such that

11m yh(n)/yh+1(n) = 0 , 1 <; h £ a-1
n—

(A.19)

Then the functions are linearly independent.
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