
Solutions to MATH 151(20-22), Dr. Z. , Second Midterm, Thursday, Nov. 20, 2008, and some
suggested extra problems

Version of Fri., Nov. 28, 2008, 5:20pm (correcting minor typos in the extra problems for #7b,
kindly pointed out by Andrew (Wei) Yang, and a few others I found myself)

Remember: 1. Show all your work. 2. Make sure that the answer(s) is (are) of the right type.
If your answer will be of the wrong type (for example, if the answer is supposed to be an equation
of a straight line, and your final answer is y = x2(x− 2) + 3 (which is not an equation of straight
line) you would get no points at all, even if everything is correct except for one step.

1. (16 points altogether ) Consider the function

f(x) =
x2 + 1
x2 − 4

(a) (2 points) Find the horizontal asymptotes

Sol. to 1a): Take the limit as x→∞

lim
x→∞

x2 + 1
x2 − 4

= lim
x→∞

x2

x2
= 1 .

(Similary with x→ −∞). So the Horizontal asympototes are y = 1 (on both sides).

(b) (2 points) Find the vertical asymptotes

Sol. of 2b): Set the denominator equal to 0:

x2 − 4 = 0

and solve. Factoring, (x − 2)(x + 2) = 0, would get you that x = −2 and x = 2 are the Vertical
Asymptotes.

(c) (2 points) Find all the local maxima and local minima

Sol. of 2c): We take the derivative, using the quotinet rule:

f ′(x) =
(
x2 + 1
x2 − 4

)′
=

(x2 + 1)′(x2 − 4)− (x2 + 1)(x2 − 4)′

(x2 − 4)2
=

(2x)(x2 − 4)− (x2 + 1)(2x)
(x2 − 4)2

=
(2x)(x2 − 4− x2 − 1)

(x2 − 4)2
=
−10x

(x2 − 4)2
.

Setting this equal to 0, gives x = 0. To find whether it is a max or min it is easiest to use the
first-derivative test (computing the second derivative is a big pain). When x = −0.1, f ′(x) is
positive, and when x = 0.1, it is negative. So right before x = 0, the function is increasing, and
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right after, it is decreasing. So x = 0 is a local max. To get the y-coordinate, we plug-in x = 0
into f(x), getting y = − 1

4 . So the local max is (0,− 1
4 ).

(d) (2 points) Find all the inflection points (if they exist)

Sol. to 1d: You could take the second derivative (using the quotient rule again, applied to f ′(x),
but it is much more efficient to do the graph first, and notice that there are no inflection points
from the graph.

Ans. to 1d: None.

(e) (4 points) In what intervals is the function (i) increasing? (ii) decreasing(?) (iii) concave up?
(iv) concave down?

Sol. of 4e: The critical numbers are x = −2, x = 0, and x = 2. These divide the real line into
four intervals: (−∞,−2),(−2, 0),(0, 2), and (2,∞).

For each of these we have to pick a random (easy) value and plug-in into

f ′(x) =
−10x

(x2 − 4)2

to see whether it is positive (meaning f(x) is increasing), or negative (meaning f(x) is decreasing).

(−∞,−2): pick x = −10, say, and get that f ′(x) is positive, so f(x) is increasing.

(−2, 0): pick x = −1 and get that f ′(x) is positive, so f(x) is increasing.

(0, 2): pick x = 1, and get that f ′(x) is negative, so f(x) is decreasing.

(2,∞):pick x = 10, and get that f ′(x) is negative, so f(x) is decreasing.

So

(i) increasing in the open intervals (−∞,−2),(−2, 0),

(ii) decreasing in the open intervals (0, 2), and (2,∞).

For (iii) and (iv), it is better to plot the graph first, and see from the graph.

(f) (4 points) Sketch the graph

The most important features are the vertical asymptototes. Plugging-in x = −2.1, we get that
f(x) is positive right before x = −2, which means that it shoots up to infinity right before the
vertical asymptote x = −2. Plugging-in x = −1.9 into f(x) gives that it is negative right after
x = −2, meaning that it shoots up from −∞ right after x = −2.

Plugging-in x = 1.9, we get that f(x) is negative right before x = 2, which means that it shoots
down to minus infinity right before the vertical asymptote x = 2. Plugging-in x = 2.1 into f(x)
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gives that it is positive right after x = 2, meaning that it shoots down from ∞ right after x = 2.
Combining with the vertical asymptotes at y = 1 from either sides, we have a graph with the
following description (you plot it!)

At the far left it is almost along the horiz. line y = 1, then it starts to rise up-up making it to ∞
right at x = 2. At x = 2 itself it suddenly drops down to −∞, and right after x = 2 it climbs its
way up from −∞ to the local max (0,−1/4), where it starts descending again dropping to −∞ at
x = 2. At x = 2 it gets promoted to ∞, and right after x = 2 it starts dropping finally leveling off
almost touching y = 1.

From the graph you can see that there are no inflection points, and that it is concave up in the
open intervals (−∞,−2) and (2,∞) and concave down in (−2, 2). Answering (d) and e(iii), e(iv).

Extra Practice Problems for the Final: Repeat exactly the same problem with the following
rational functions:

f(x) =
x

x2 − 1

f(x) =
x

x2 + 1

f(x) =
1

x3 − x

2. (a) (6 points) Find

lim
x→0

x− tan−1 x

x3

Sol. of 6a: When x = 0 we get 0/0, so we use L’Hôpital.

lim
x→0

x− tan−1 x

x3
= lim
x→0

(x− tan−1 x)′

(x3)′
= lim
x→0

1− 1
1+x2

3x2
.

We still get 0/0, but don’t rush to use L’Hôpital again. First simplify!, using algebra.

lim
x→0

x2

1+x2

3x2
= lim
x→0

1
3(1 + x2)

Now plug-in x = 0, to get

=
1

3(1 + 02)
=

1
3

.

A
¯

ns. to 2a: 1
3 .

(b) ( 6 points)

lim
x→0

sinx− x+ x3

6 −
x5

120

x7
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Sol. to 2b): Here we use L’Hôpital seven times!

lim
x→0

sinx− x+ x3

6 −
x5

120

x7

= lim
x→0

cosx− 1 + x2

2 −
x4

24

7x6

= lim
x→0

− sinx+ x− x3

6

7 · 6x5

= lim
x→0

− cosx+ 1− x2

2

7 · 6 · 5x4

= lim
x→0

sinx− x
7 · 6 · 5 · 4x3

= lim
x→0

cosx− 1
7 · 6 · 5 · 4 · 3x2

= lim
x→0

− sinx
7 · 6 · 5 · 4 · 3 · 3 · 2x

= lim
x→0

− cosx
7 · 6 · 5 · 4 · 3 · 3 · 2 · 1

=
− cos 0

7 · 6 · 5 · 4 · 3 · 3 · 2 · 1
= − 1

5040

Ans. to 2b): − 1
5040 .

Extra Practice for the Final: Compute

lim
x→0

x− sin−1 x

x

lim
x→0

√
x+ 1−

√
x+ 2

x

lim
x→0

cosx− 1 + x2

2

x4

3. (a) (6 points) Use one step in Newton’s method to approximate
√

15, starting with x0 = 4.

Sol. to 3: Newton’s method is a way to approximate roots of equations of the form f(x) = 0.
So first, we must find an equation satisfied by x =

√
15. Squaring both sides, we get x2 = 15,

and moving 15 to the left, we get x2 − 15 = 0. So f(x) = x2 − 15 not (as many people took it)
f(x) =

√
x.

Newton’s method is:

xn+1 = xn −
f(xn)
f ′(xn)

.
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With n = 0, it is:

x1 = x0 −
f(x0)
f ′(x0)

.

Since f(x) = x2 − 15, we have that f ′(x) = 2x. So

x1 = x0 −
x2

0 − 15
2x0

.

Plugging-in x0 = 4, we get

x1 = 4− 42 − 15
2 · 4

= 4− 16− 15
2 · 4

=

= 4− 1
8

=
31
8

.

Ans. to 3a: 31
8 .

Extra Problems for Practice for the Final

Repeat the same problem for: √
26 , x0 = 5 .

1√
50

, x0 = 7 .

91/3 x0 = 2 .

(b) ( 6 points) Use the linearization of f(x) =
√
x at x = 16 to find an approximation to

√
15.

Sol. to 3b): Now f(x) =
√
x = x1/2 and a = 16. Recalling the Linearization formula

L(x) = f(a) + f ′(a)(x− a) ,

we have f ′(x) = (1/2)x−1/2 = 1
2
√
x

. So f ′(16) = 1
2
√

16
= 1

8 . Of course f(16) =
√

16 = 4, so the
Linearization is:

L(x) = 4 +
1
8

(x− 16) .

To get an approximation for
√

15 we plug-in x = 15 (Note: NOT x =
√

15, this makes absolutely
no sense! It is confusing input and output, the whole point is to find information about

√
15, so

plugging-in is circular reasoning, logically, and does not make any sense mathematically).

So we get:
√

15 = f(15) ≈ L(15) = 4 +
1
8

(15− 16) = 4− 1
8

=
31
8

.

Ans. to 3b): 31
8 .

Extra Problems for Practice for the Final
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Repeat the same problem with the following:

f(x) = lnx at x = e2 to find an approximation to ln(e2 + 0.1).

f(x) = x1/3 at x = 27 to find an approximation to 261/3.

4. (a) ( 6 points) The volume of a cube is expanding at a rate of 1 cubic centimeter per second.
How fast is its surface area expanding when the volume of the cube is 1000 cubic centimeters?

Sol. to 4a: Let’s the side of the cube be x. Its volume, V equals x3, and its surface area, S equals
6x2. So, thanks to Geometry

V = x3 , S = 6x2 .

Taking derivative with respect to t, we get

dV

dt
= 3x2 dx

dt
,

dS

dt
= 12x

dx

dt
.

When V = 1000, x = 10. Plugging-in the first equation, using dV
dt = 1, we get

1 = 3 · (10)2 dx

dt
,

So dx
dt = 1

300 . Plugging-into the second equation:

dS

dt
= 12 · 10 · 1

300
=

2
5

.

Ans. to 4a): 2
5cm

2/s.

Comment: Another way of doing it is to use V = x3, S = 6x2 and algebra to express S in terms
of V : S = 6V 2/3. Taking derivative with respect to t, we get:

dS

dt
= 6(2/3)V −1/3 dV

dt
= 4 · (1000)−1/3 · 1 = 4/10 = 2/5 .

Extra Problems for Practice for the Final:

The volume of a sphere is expanding at a rate of π cubic centimeters per second. How fast is its
surface area expanding when the volume of the sphere is 4000π/3 cubic centimeters?

Hint: The volume of a sphere of radius r is 4πr3/3. Its surface area is 4πr2.

The surface area of a cube is changing at a rate of 2/5 square centimeter per second. How fast is
its volume expanding when the volume of the cube is 1000 cubic centimeters?

(b) (6 points) Find the linearization L(x) of f(x) = lnx at x = e2.
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Sol. to 6b): Once again we use

L(x) = f(a) + f ′(a)(x− a) ,

Here f(x) = lnx, a = e2. f(a) = ln e2 = 2, f ′(x) = 1/x, so f ′(e2) = 1/e2. Combining, we have:

L(x) = ln e2 +
1
e2

(x− e2) = 2 +
1
e2

(x− e2) .

Ans. to 4b: (L(x) = 2 + 1
e2 (x− e2).

Comment: Some people simplified further to 1 + x/e2, that’s OK too, but not necessary, and the
former form is better.

Extra Problems for Practice

Find the linearization L(x) of f(x) = ex at x = ln 2.

Find the linearization L(x) of f(x) = tanx at x = π/4.

Find the linearization L(x) of f(x) = tan−1 x at x = 1.

5. Differentiate the following functions

(a) (4 points)
f(x) = lnx · tan−1(x2 + 1)

Sol. to 5a): First we use the product rule:

f ′(x) = (lnx · tan−1(x2 + 1))′ = (lnx)′ · tan−1(x2 + 1) + (lnx) · (tan−1(x2 + 1))′

1
x
· tan−1(x2 + 1) + (lnx) · (tan−1(x2 + 1))′ .

Next we use the chain rule applied to (tan−1(x2 + 1))′.

=
1
x
· tan−1(x2 + 1) + (lnx) · 1

(x2 + 1)2 + 1
· (2x)

Cleaning up, we get

f ′(x) =
tan−1(x2 + 1)

x
+

2x lnx
(x2 + 1)2 + 1

.

This is the ans. .

Extra Problems for Practice for the Final
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Differentiate the following problems:

f(x) = ex · sin−1(x2 + 1)

f(x) = sinx2 · sin−1(x2 + 1)

(b) (4 points) Differentiate wirh respect to x:

f(x) = 10sin x5cos x

Sol. to 5b): The best way is to use logarithmic differentiation. Taking the ln of both sides,
we get:

ln f(x) = ln 10sin x + ln 5cos x = (sinx)(ln 10) + (cosx)(ln 5) = (ln 10) sinx+ (ln 5)(cosx) .

Differentiating both sides, we get

f ′(x)
f(x)

= (ln 10)(sinx)′+(ln 5)(cosx)′ = (ln 10)(cosx)+(ln 5)(− sinx) = (ln 10) cosx−(ln 5) sinx .

Finally, multiplying both sides by f(x), we get

f ′(x) = ((ln 10) cosx− (ln 5) sinx)10sin x5cos x .

Note: Another was of doing this is to use 10 = eln 10 and 5 = eln 5 to write

f(x) = e(ln 10) sin xe(ln 5) cos x = e(ln 10) sin x+(ln 5) cos x ,

and use the chain rule.

Extra Problem for Practice for the Final

Differentiate the following functions:

f(x) = 13sin x8tan x11e
x

.

(c) (4 points) Differentiate with respect to x:

f(x) = (
√

ln(ex) + 1)2

Sol. to 5c): Remember the slogan: “Simplify before you differentiate!” .

f(x) = (
√

ln(ex) + 1)2 = ln(ex) + 1 = x+ 1 .
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Now things are really easy: f ′(x) = 1.

Ans. to 5c): f ′(x) = 1.

Extra Problem for Practice for the Final

f(x) = (
√
eln(sin x) + 1)2 .

6. (12 points) A jeweler has to design am open box, with a square base, of 2000 cubic centimeters,
where the bottom is made of silver, and the four sides are made of gold. The cost of silver is 10
dollars per square centimeter, while the cost of gold is 20 dollars per square centimeter. What are
the dimensions of the box that would minimize the cost?

Sol. to 6: The constraint is
x2y = 2000 .

The area of the silver bottom is x2, and its cost is 10x2. The area of each of the four sides (made
of gold) is xy, so the total area of the sides is 4xy, and their cost is 20(4xy) = 80xy. The total cost
is

C = 10x2 + 80xy .

From the constraint, we get y = 2000
x2 . Pluging this into C we get the goal function purely in

terms of x:
f(x) = 10x2 + 80x · 2000

x2
= 10x2 + 160000x−1 .

To find the minimum, we find f ′(x)

f ′(x) = 20x− 160000
x2

.

Setting this equal to 0, gives:

20x− 160000
x2

= 0

Simplifying:
x3 = 8000 .

Taking the cubic root we get x = 20. Plugging into

y =
2000
x2

,

we get

y =
2000
202

=
2000
400

= 5 .

Ans. to 6: The dimensions that would minimize the cost are 20× 20× 5 cm.

Extra Problems for Practice for the Final
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Repeat the same problem for a closed box, where both top and bottom are made of silver.

Repeat the original porblem, but where the cost is fixed at 12000 dollars and you have to maximize
the volume.

7. (a) (6 points) Find the absolute maximum and the absolute minimum of the function

f(x) = xe−2x ,

on the interval [0, 2].

Sol. of 7a): First we take the derivative, using the product rule (and the chain rule)

f ′(x) = e−2x + xe−2x(−2) = e−2x − 2xe−2x .

Now we simplify as much as we can:

f ′(x) = e−2x(1− 2x)

Setting f ′(x) = 0, we get 1 − 2x = 0, so x = 1
2 is a critical point. Since it happens to be in our

interval, [0, 2], we take it as finalist. (Note that e−2x is never zero). The finalists are the critical
point(s) (that happen to belong to our interval) and the two endpoints.

The final contestnats are x = 0, x = 1
2 , x = 2. Plugging-in f(x) we get

f(0) = 0 , f(
1
2

) =
1
2e

, f(2) =
2
e4

.

The abs. min. is obviously 0 at x = 0. The abs. max is 1
2e at x = 1

2 . (Note, here you use that
e = 2.71...)

Extra Problems for Practice for the Final

Repeat the above problem with:

f(x) = x2e−3x, [0, 3].

f(x) = xe−x
2
, [−1, 1].

(b) (6 points) Solve the differntial equation

y′′(x) = sinx ,

with initial condition y(π/2) = 1, y′(π/2) = 2.

Sol. of 6b): First we must find y′(x), by finding the anti-derivative of y′′(x):

y′(x) =
∫

sinx dx = − cosx+ C .
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Plugging-in x = π/2 and using the data that y′(π/2) = 2, we get

2 = − cos(π/2) + C = 0 + C = C .

So C = 2. Now we know for sure that

y′(x) = − cosx+ 2 .

To find y(x), we take the anti-derivative of that:

y(x) =
∫

(− cosx+ 2) dx = − sinx+ 2x+ C

To find C we plug-in x = π/2, using y(π/2) = 1:

1 = − sin(π/2) + 2 · (π/2) + C

So
1 = −1 + π + C

Solving for C gives:
C = 2− π .

Putting it back in the formula for y(x) above, we get

y(x) = − sinx+ 2x+ 2− π .

Ans. to 7b): y(x) = − sinx+ 2x+ 2− π.

Extra Problems for Practice for the Final

Solve the differential equations

y′′ = ex , y(0) = 1, y′(0) = e+ 1 .

y′ = sec2 x+ 1, y(π/4) = 1 + π/4, .

8. (12 points) Use the definition of the definite integral∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(xi)∆x ,

(where ∆x = (b− a)/n and xi = a+ i∆x), to evaluate the definite integral∫ 2

0

3xdx .
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Hint: You may need the formula:
n∑
i=1

i =
n(n+ 1)

2
.

Sol. of 8.: Here a = 0, b = 2, f(x) = 3x. ∆x = (2− 0)/n.

lim
n→∞

n∑
i=1

f(0 +
2
n
i)

2
n

= lim
n→∞

n∑
i=1

f(
2
n
i)

2
n

= lim
n→∞

n∑
i=1

3(
2
n
i)

2
n

= lim
n→∞

n∑
i=1

3(
2
n

)
2
n
i

= lim
n→∞

n∑
i=1

12
n2
i .

Everything not involving i can be taken in front of the
∑

:

= lim
n→∞

12
n2

(
n∑
i=1

i

)
.

Using the formula, this equals

= lim
n→∞

12
n2

n(n+ 1)
2

Simplifying:

= lim
n→∞

6(n+ 1)
n

.

Using “forget about the little ones”, this equals

= lim
n→∞

6n
n

= lim
n→∞

6 = 6 .

Ans. to 8.: 6.

Extra Problems for Practice for the Final:

Repeat the same problem for the following definite integrals

∫ 3

0

x2 dx

∫ 1

−1

(3− x) dx

∫ 2

0

x3 dx
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