Answers to Dr. Z's Three Practice Final Exams

Disclaimer: Not repsponsible for any typos or other erros. Award of $\$ 1$ for any mistake found).
Note: Sometimes there is more than one "correct" answer, but using algebra, one should be able to go from one correct answer to another.

Answers to First Practice Final

(http://www.math.rutgers.edu/ ${ }^{\text {zeilberg/calc1N/pf1.pdf) }}$

1. $\frac{-1}{2 \sqrt{x+1}}$ (but you had to do it from the definition!)
2.

$$
\frac{-y^{4}-3 x^{2} y-y+8 x}{x\left(x^{2}+4 y^{3}+1\right)}
$$

3. (a) 9 , forward; (b) $t=-1, t=1$; (c) 22 .
4. (a)

$$
-\frac{(x+1) \sin x+\cos x}{(x+1)^{2}}
$$

(b) $\sin x \cos x+x\left(\cos ^{2} x-\sin ^{2} x\right)$ OR $\frac{1}{2} \sin 2 x+x \cos 2 x$
(c)

$$
\frac{3 x \cos x-4-4 \sin x}{(x-\cos x)^{2}}
$$

(d)

$$
\frac{e^{2 x}(1+2 x)}{(1+x)^{2}} .
$$

5. $y=2 x+2$
6. (a) -4 (b) $\frac{1}{2}$ (c) 1 (d) 3
7. (a) $3,0, D N E, 9,-3, D N E$ (b) $x=0, x=3$
8. Point: $(2,0)$. Eq. of tangnet line: $y=x-2$
9. (a)

$$
\frac{6\left(1-3 x^{4}\right)}{\left(x^{4}+1\right)^{2}}
$$

(b) $5(5 t-2) e^{-5 t}$
(c) $\left(2-x^{2}\right) \sin x+4 x \cos x$.
10. H.A.: $y=0$; V.A: $x=-1, x=1$; Local max: none; Local Min: none; Point of Inflection: $(0,0)$; increasing: none; decreasing: $(-\infty,-1),(-1,1),(1, \infty)$. Verbal description: at the extreme left barely touches the x-axis, just a tiny bit below, eventually, as it reaches $x=-1$ shoots down to $-\infty$, only to emerge, right after $x=-1$ from ∞, going down, via the origin, that it the only point of inflection, down down to $-\infty$ at $x=1$, at $x=1$
it suddenly jumps to ∞ and starts its descent down, eventually getting very close, and almost parallel to the x-axis, but never crossing it.
11. $\frac{41}{49} \Omega / s$.
12. (a) $1-\frac{1}{100 e}$ (b) $\frac{5}{3}$
13. (a) $\sqrt[3]{2}$ (b) abs. max: 9 at $x=2$; abs. min: -2 at $x=1$.
14. inc.: $(-\infty, 1)$, dec.: $(1, \infty)$, (b) local max: $\left(1, \frac{1}{e}\right)$, local min: none, (c) concave down: $(-\infty, 2)$, concave up: $(2, \infty)$, point of inflection: $\left(2, \frac{2}{e^{2}}\right)$. (d) Verbal description: comes from the left from $-\infty$, climbing up, passing through the origin, peaking at the max. $\left(1, \frac{1}{e}\right)$, where it goes down, passing through the inflection point $\left(2, \frac{2}{e^{2}}\right)$, and keep going down, but slower and slower, eventually barely touching the positive t-axis.
15. $10 \times 10 \times 10$.
16. a) $\frac{3}{2} x^{2}+5 \sin ^{-1} x+C$ (b) $\frac{x^{2}}{2}+x+\ln |x|+C$ (c) $x^{2}+\frac{1}{x^{3}}+1$.

Answers to Second Practice Final

(http://www.math.rutgers.edu/~zeilberg/calc1N/pf2.pdf)

1. -3 (but you had to do it from the definition!)
2. (a) 2 (b) 2

3 .(a) $c=\frac{1}{4}$ (b) $c=\frac{1}{2}, d=-\frac{1}{2}$.
4. (a) $\frac{49}{10}$; (b) larger (because curve is concave down at $x=20$).
5. (a) 0 (b) 0 (c) 2
6. (a) abs. max.: 8 at $x=-8$; abs. min: -1 at $x=1$. (b) abs. min.: 0 at $x=0$; abs. $\max : \frac{1}{e}$ at $x=1$
7. (a) 2 by 6 (b) 2
8. (a) $y=\frac{4}{3} x^{3}+2 x$ (b) $y=-2 \sin x-\cos x-x+3+\frac{\pi}{2}$
9. a) H.A.: $y=0$, V.A.: $x=-3, x=3$. b) dec.: $(-\infty,-2),(-2,0)$; inc.: $(0,2),(2, \infty)$. local min: $\left(0, \frac{4}{9}\right)$, local max: none. c): concave up: $(-3,3)$, concave down: $(-\infty,-3),(3, \infty)$, points of inflection: none. d): you do it!
10.(a) $y=\frac{2}{9} x+\frac{5}{9}$; (b) $y=-\frac{3}{2} x+6$.
11. (a) 40 (b) Use IVT, $f(-4)$ is neg. while $f(3)$ is pos.
12. (a)

$$
\frac{\frac{-3}{x^{2}} e^{\frac{3}{x}} \cos \left(x^{2}-x\right)+e^{\frac{3}{x}}(2 x-1) \sin \left(x^{2}-x\right)}{\cos ^{2}\left(x^{2}-x\right)}
$$

(b)

$$
\frac{3}{2} \frac{\sqrt{\sin ^{-1} x}(2 \ln x-\ln (x+1))}{\sqrt{1-x^{2}}}+\left(\sin ^{-1} x\right)^{3 / 2}\left(\frac{2}{x}-\frac{1}{x+1}\right)
$$

(c) $2 x e^{x^{2}} \cos \left(e^{x^{2}}\right)$
13. (a) $\frac{3}{4}$ (b) $\frac{1}{6}$ (c) 0 (the integrand is an odd function [why?]).
14. (a) $h=\frac{4000}{x}$ (b) height of shadow: 25 meters; rate of change of height of shadow: $-\frac{5}{8}$ $\mathrm{m} / \mathrm{sec}$. (c) $-\frac{1}{325}$ radians per sec.
15. (a) $-\frac{1}{4} e^{\frac{2}{x^{2}}}+C$ (b) $\pi^{4} \sqrt{\pi} / 2304+\frac{1}{2}$ (c) 50π (d) $x=0$ and $x=-1$.

Answers to Third Practice Final

(http://www.math.rutgers.edu/~zeilberg/calc1N/pf3.pdf)

1. $-\frac{1}{4}$ (but you had to do it from the definition).
2. (a) 20 (b) $\frac{7}{3}$
3. (a) $\frac{x}{2}+\frac{\sin 2 x}{4}+C, \frac{x}{2}-\frac{\sin 2 x}{4}+C$ (b) $\frac{319}{420}, \frac{4448}{6435}, \frac{533}{840}$.
4. (a) $\frac{1}{2} n\left(6 n^{2}+3 n-1\right)$ (b) use symmetry.
5. (a) $\frac{1}{4} \tan ^{4} x+C$ (b) $\sqrt{2+x^{3}},-\sqrt{2+x^{3}}$ (c) $2 x e^{x^{6}}-e^{x^{3}}$
6. (a) $\frac{1}{2}$ (b) 1 .
7. $(2+\sqrt{2}, \sqrt{\ln (2+\sqrt{2})})$
8. 200 by 80 .
9. (a) inc.: $(-\infty, 0),(1, \infty)$; dec.: $(0,1)$. Local max: $(0,1)$, local min: $(1,0)$. (b) concave up: $\left(\frac{1}{2}, \infty\right)$; concave down: $\left(-\infty, \frac{1}{2}\right)$. Point of inflection: $\left(\frac{1}{2}, \frac{1}{2}\right)$ (c) You do it!
10. inc.: $\left(e^{-1 / 3}, \infty\right)$; dec.: $\left(-\infty, e^{-1 / 3}\right)$. Local min: $\left(e^{-1 / 3},-\frac{1}{3 e}\right)$,
concave down: $\left(-\infty, e^{-5 / 6}\right)$, concave up: $\left(e^{-5 / 6}, \infty\right)$; p.o.i: $\left(e^{-5 / 6},-\frac{5}{6} e^{-5 / 2}\right)$.
11. (a) $f(5) \leq-9$ (b) $y=4, y=-4$ (c) $y=2, y=-2$.
12. (a)

$$
\frac{4 x^{3}}{1+\left(x^{4}+1\right)^{2}}
$$

(b)

$$
\frac{5 x^{4}+2 e^{2 x}}{(\ln 10)\left(x^{5}+e^{2 x}\right)}
$$

(c)

$$
\left(x^{2}+4\right)^{-1 / 2}-x^{2}\left(x^{2}+4\right)^{-3 / 2}
$$

13.(a) $-\frac{4}{5}$ (b)

$$
-\frac{2 y^{3}+2 x y^{2}+2 y+3 x^{2}}{6 x y^{2}+2 x^{2} y+2 x+1}
$$

14. $\frac{1}{300} \mathrm{~m} / \mathrm{s}$.
15. (a) abs. max: 9 and $x=3$; abs. min: 4 at $x=2$. (b) H.A.: $y=-1$, V.A.: $x=-1, x=1, x=-2, x=2$.
