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1. (13 pts.) Find the curvature of the curve

r(t) = 〈t, t2, 2
3
t3〉

at the point (1, 1, 2
3 ).
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2. (13 points) By using Stokes’s Theorem, or otherwise, evaluate
∫
C

F · dr where

F (x, y, z) = yz2 i + xz2 j + 2xyz k ,

and C is the curve of intersection of the plane x+ y + z = 1 and the cylinder x2 + y2 = 9
oriented counterclockwise as viewed from above. Be sure to explain everything.
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3. (13 points) Find ∂z
∂x and ∂z

∂y if

x3 + y3 + z3 = 5xyz + 1 .
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4. (13 points) Find an equation for the tangent plane to the parametric surface:

x = u2 , y = u+ v , z = v2 ,

at the point (1, 2, 1). Simplify as much as you can!
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5. (13 points) Change the order of integration in∫ 2

1

∫ ln x

0

f(x, y) dy dx .
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6. (13 points) Let
F(x, y, z) =

〈cos(
√

1 + x+ x3) , tan((1 + cos(
√

1 + x+ x3))7) , tan−1((ex
2

+ cos(
√

1 + x+ x3))7〉 ,

and let 〈P , Q , R 〉 = curlF. Compute

∂P

∂x
+
∂Q

∂y
+
∂R

∂z
.

Be sure to explain everything.
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7. (13 points) Let C be the line segment from (0, 1) to (3, 5), find
∫
C

2xy ds.
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8. (13 points) Evaluate∫
C

(5y − sin(ex)) dx+ (10x− ecos2 y) dy ,

where C is the closed curve consisting of the boundary of the rectangle

{ (x, y) | 0 ≤ x ≤ 4 , 0 ≤ y ≤ 3 } .
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9. (12 points) Find the Jacobian of the transformation

x = u+ v + w , y = u2 + v2 + w2 , z = u3 + v3 + w3 .

Simplify as much as you can!
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10. (12 points) Find the volume of the solid bounded by the cylinder y = x2 and planes
z = 0 and y + z = 1. Simplify as much as you can!
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11. ( 12 points) Use Lagrange multipliers (no credit for other methods!) to find the largest
value that x+ 3y + 5z can be, given that x2 + y2 + z2 = 35.
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12. (12 points) Find an equation of the tangent plane to the surface z = e2x−3y at the
point (3, 2, 1). Simplify as much as you can!
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13. (12 points) Find the local maximum and minimum points, the local maximum and
minimum values, and saddle point(s) of the function f(x, y) = 4x2 + y2 + 2x2y − 1.
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14. (12 points) Find the velocity and position vectors of a particle whose acceleration is
a(t) = i + j, and at t = 0 the velocity is i− j and the position is k.
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15. (12 points) Find an equation for the plane through the point (1, 0, 2) that contains
the line

r(t) = 〈1, 1, 1〉+ t〈1,−1, 0〉 .

Simplify as much as you can!
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16. (12 points) Compute the limit

lim
(x,y,z)→(1,1,1)

e−xy sin(πz/2) ,

or prove that it does not exists.
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