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1. (13 pts.) Find the curvature of the curve r(t) = 〈t, t2, 2
3 t

3〉 at the point (1, 1, 2
3 ).

Solution:
r′(t) = 〈1, 2t, 2t2〉 ,

r′′(t) = 〈0, 2, 4t〉 .

Since we are interested at the point (1, 1, 2
3 ), setting this equal to 〈t, t2, 2

3 t
3〉, gives t = 1. Now plug-in t = 1,

to get
r′(1) = 〈1, 2, 2〉 ,

r′′(1) = 〈0, 2, 4〉 .

The formula for the curvature is:

κ(t) =
|r′(t)× r′′(t)|
|r′(t)|3

.

So

κ(1) =
|〈1, 2, 2〉 × 〈0, 2, 4〉|
|〈1, 2, 2〉|3

.

First we compute the cross the product: ∣∣∣∣∣∣
i j k
1 2 2
0 2 4

∣∣∣∣∣∣ =

i
∣∣∣∣ 2 2
2 4

∣∣∣∣− j
∣∣∣∣ 1 2
0 4

∣∣∣∣+ k
∣∣∣∣ 1 2
0 2

∣∣∣∣
= i(2 · 4− 2 · 2)− j(1 · 4− 0 · 2) + k(1 · 2− 2 · 0) =

4i− 4j + 2k = 〈4,−4, 2〉 .

So

κ(1) =
|〈4,−4, 2〉|
|〈1, 2, 2〉|3

=√
42 + (−4)2 + 22

(
√

12 + 22 + 22)3
=
√

36
(
√

9)3
=

6
33

=
2
9

.

Ans.: 2
9 .
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2. (13 points) By using Stokes’s Theorem, or otherwise, evaluate
∫
C

F · dr where

F (x, y, z) = yz2 i + xz2 j + 2xyz k ,

and C is the curve of intersection of the plane x + y + z = 1 and the cylinder x2 + y2 = 9 oriented
counterclockwise as viewed from above. Be sure to explain everything.

Solution: Stokes theorem says that ∫
C

F · d r =
∫ ∫

curlF · dS ,

where S is any open surface whose boundary is C. But curlF = 〈0, 0, 0〉 (you do it!), so it does not matter
what S is, since the surface-integral of 0 is always 0.

Ans. 0.
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3. (13 points) Find ∂z
∂x and ∂z

∂y if
x3 + y3 + z3 = 5xyz + 1 .

Solution: The easiest way is to use the formulas for implicit differentiation. If F (x, y, z) = 0 then

∂z

∂x
= −Fx

Fz
,

∂z

∂y
= −Fy

Fz
.

First we make
x3 + y3 + z3 = 5xyz + 1

into
x3 + y3 + z3 − 5xyz − 1 = 0 ,

so in this problem
F (x, y, z) = x3 + y3 + z3 − 5xyz − 1 .

Now Fx = 3x2 − 5yz, Fy = 3y2 − 5xz, Fz = 3z2 − 5xy, and we have

∂z

∂x
= −3x2 − 5yz

3z2 − 5xy
,

∂z

∂y
= −3y2 − 5xz

3z2 − 5xy
.

These are the answers.
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4. (13 points) Find an equation for the tangent plane to the parametric surface:

x = u2 , y = u+ v , z = v2 ,

at the point (1, 2, 1).

Solution: This is a parametric surface. Writing it in vector form we have:

r(u, v) = 〈u2 , u+ v , v2〉.

Taking partial derivatives with respect to u and v we have

ru = 〈 2u , 1 , 0〉 ,

rv = 〈 0 , 1 , 2v〉 .

What are the actual values of u and v at our point (1, 2, 1)?. Solving 1 = u2, 2 = u + v, 1 = v2 gives u = 1
and v = 1. Plugging-in u = 1 and v = 1 above we get

ru(1, 1) = 〈 2 , 1 , 0〉 ,

rv(1, 1) = 〈 0 , 1 , 2〉 .

Now a normal vector is ru × rv. Taking cross-product

〈 2 , 1 , 0〉 × 〈 0 , 1 , 2〉 = 〈 2 , −4 , 2〉 .

The equation of plane with normal vector 〈a, b, c〉 passing through a point (x0, y0, z0) is a(x − x0) + b(y −
y0) + c(z − z0) = 0. So the equation of the tangent plane is:

2(x− 1)− 4(y − 2) + 2(z − 1) = 0 .

Dividing by 2 gives:
(x− 1)− 2(y − 2) + (z − 1) = 0 .

Simplifying, gives: x− 1− 2y + 4 + z − 1 = 0, which is x− 2y + z + 2 = 0, or z = −x+ 2y − 2.

Ans.: x− 2y + z + 2 = 0, or z = −x+ 2y − 2.
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5. (13 points) Change the order of integration in∫ 2

1

∫ ln x

0

f(x, y) dy dx .

Solution: This iterated integral, of type-I, can be written as the double-integral
∫ ∫

D
f(x, y) dy dx, where

D is the region
D = {(x, y) | 1 ≤ x ≤ 2 , 0 ≤ y ≤ lnx }.

This is a “triangle-like” region with vertices (1, 0), (2, 0), and (2, ln 2). We have to express it as a type-II
region. Its projection on the y-axis is the interval 0 < y < ln 2. This is the “main-road”. A typical horizontal
cross-section starts at the curve y = lnx, which we now write as x = ey and ends at the vertical line x = 2,
so the region D, written in type-II style is

D = {(x, y) | 0 ≤ y ≤ ln 2 , ey ≤ x ≤ 2 },

and our double-integral in dx dy-type is ∫ ln 2

0

∫ 2

ey
f(x, y) dx dy .

Ans.:
∫ ln 2

0

∫ 2

ey
f(x, y) dx dy .
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6. (13 points) Let
F(x, y, z) =

〈cos(
√

1 + x+ x3) , tan((1 + cos(
√

1 + x+ x3))7) , tan−1((ex
2

+ cos(
√

1 + x+ x3))7〉

and let 〈P , Q , R 〉 = curlF. Compute
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
.

Be sure to explain everything.

Solution: ∂P
∂x + ∂Q

∂y + ∂R
∂z is div〈P,Q,R〉. Since 〈P , Q , R 〉 = curlF, what we need is div〈P , Q , R 〉 =

div curlF. But div curlF is always 0 no matter what F is, so the answer is 0.

Ans.: 0.
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7. (13 points) Let C be the line segment from (0, 1) to (3, 5), find
∫
C

2xy ds.

Solution: The parametric equation for the line-segment joining (0, 1) and (3, 5) is

r(t) = (1− t)〈0, 1〉+ t〈3, 5〉 = 〈3t, 1 + 4t〉 .

So x = 3t and y = 1 + 4t. We have ds = |r′(t)|dt. Since r′(t) = 〈3, 4〉, ds = |〈3, 4〉|dt =
√

32 + 42dt = 5dt.

How line-integral becomes the definite integral

∫
C

2xy ds =
∫ 1

0

2(3t)(1 + 4t) 5 dt = 30
∫ 1

0

t(1 + 4t) dt = 30
∫ 1

0

t+ 4t2 dt =

30
(
t2

2
+

4t3

3

) ∣∣∣1
0
= 30

(
1
2

+
4
3
− 0
)

= 30 · 11
6

= 55 .

Ans.: 55.
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8. (13 points) Evaluate ∫
C

(5y − sin(ex)) dx+ (10x− ecos2 y) dy ,

where C is the closed curve consisting of the boundary of the rectangle

{ (x, y) | 0 ≤ x ≤ 4 , 0 ≤ y ≤ 3 } .

Solution: Use Green’s Theorem:∫
C

P dx+Qdy =
∫ ∫

D

(Qx − Py) dA ,

where D is the region that is inside C. In our case D is the above rectangle.

In this problem P = 5y − sin(ex) and Q = 10x − ecos2 y. Qx = 10 and Py = 5, so Qx − Py = 5 and the
desired answer is

∫ ∫
D

5 dA, that can be done directly, but more efficiently equals 5
∫ ∫

D
dA which is 5 times

the area of the rectangle, which is 3 · 4 = 12. So the answer is 5 · 12 = 60.

Ans.: 60.
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9. (12 points) Find the Jacobian of the transformation

x = u+ v + w , y = u2 + v2 + w2 , z = u3 + v3 + w3 .

Solution: The Jacobian is: ∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 1 1

2u 2v 2w
3u2 3v2 3w2

∣∣∣∣∣∣
= 1 ·

∣∣∣∣ 2v 2w
3v2 3w2

∣∣∣∣ − 1 ·
∣∣∣∣ 2u 2w
3u2 3w2

∣∣∣∣ + 1 ·
∣∣∣∣ 2u 2v
3u2 3v2

∣∣∣∣
= [(2v)(3w2)− (2w)(3v2)]− [(2u)(3w2)− (2w)(3u2)] + [(2u)(3v2)− (2v)(3u2)]

= 6(uv2 − uw2 − vu2 + vw2 + wu2 − wv2) .

Ans.: 6(uv2 − uw2 − vu2 + vw2 + wu2 − wv2).

Remark: Using algebra, this can be factored to be 6(v − u)(w − u)(w − v).
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10. (12 points) Set-up but do not evaluate, a triple iterated integral for the volume of the solid bounded by
the cylinder y = x2 and planes z = 0 and y + z = 1 .

Solution: The surface y + z = 1 (that happens to be a plane) can be written, explicitly, as z = 1 − y. To
see where it meets the xy-plane we set z = 0 and get 1− y = 0, which is y = 1. So the projection of our 3D
region on the xy-plane is the region bounded by y = x2 and y = 1 (draw it). The full region can be written
as

E = {(x, y, z) | − 1 ≤ x ≤ 1 , x2 ≤ y ≤ 1 , 0 ≤ z ≤ 1− y} .

The volume is the volume-integral
∫ ∫ ∫

E
1 dV , and writing it as an iterated integral gives∫ 1

−1

∫ 1

x2

∫ 1−y

0

dz dy dx .

This is the answer.
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11. ( 12 points) Use Lagrange multipliers (no credit for other methods!) to find the largest value that xyz
can be, given that x+ y + z = 3.

Solution: f = xyz, g = x + y + z − 3. 5f = 〈yz, xz, xy〉, 5g = 〈1, 1, 1〉. Setting 5f = λ 5 g, we get
〈yz, xz, xy〉 = 〈λ, λ, λ〉. We have to solve the system of four equations and four unknowns.

yz = λ , xz = λ , xy = λ , , x+ y + z = 3 .

One possibility is λ = 0 then we get the solutions

λ = 0 , x = 0 , y = 0 , z = 3 ,

λ = 0 , x = 0 , y = 3 , z = 0 ,

λ = 0 , x = 0 , y = 0 , z = 3 .

If λ 6= 0, then none of x, y, z are 0, and we can divide the second equation by the first, getting y = x, and
the third equation by the second getting, y = z, so x = y = z, and plugging-in into the last equation gives
3x = 3 which means that x = 1, and so y = 1 and z = 1.

The finalists are (x, y, z) = (3, 0, 0), (x, y, z) = (0, 3, 0), (x, y, z) = (0, 0, 3), and (x, y, z) = (1, 1, 1). Plugging-
into f(x, y, z) = xyz, we get f(3, 0, 0) = 0, f(0, 3, 0) = 0,f(0, 0, 3) = 0, and f(1, 1, 1) = 1. The biggest among
these is 1, so this is the maximum value.

Ans.: 1.
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12. (12 points) Find an equation of the tangent plane to the surface z = e2x−3y at the point (3, 2, 1).

Solution: Here the surface is given explicitly z = f(x, y), where f(x, y) = e2x−3y. The relevant formula is

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

But first let’s make sure that the problem makes sense, i.e. that the point (3, 2, 1) lies on our surface.
f(3, 2) = e2(3)−3(2) = e0 = 1, so it is OK.

No fx(x, y) = 2e2x−3y, fy(x, y) = −3e2x−3y, so fx(3, 2) = 2, fy(3, 2) = −3, and since x0 = 3, y0 = 2, z0 = 1,
the equation of the tangent plane is:

z − 1 = 2(x− 3)− 3(y − 2) = 2x− 3y .

Simplifying, we get z = 2x− 3y + 1.

Ans.: z = 2x− 3y + 1.
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13. (12 points) Find the local maximum and minimum points, the local maximum and minimum values,
and saddle point(s) of the function f(x, y) = 4x2 + y2 + 2x2y − 1.

Solution:
fx = 8x+ 4xy , fy = 2y + 2x2 .

For future reference,
fxx = 8 + 4y , fxy = 4x , fyy = 2 .

We have to solve fx = 0, fy = 0, in other words the system

8x+ 4xy = 0 , 2y + 2x2 = 0 .

From the second equation we get y = −x2 always. Plugging this into the first equation gives 4x(2 + y) =
4x(2− x2) = 0, whose solutions are x = 0, x = −

√
2, x =

√
2. Using y = −x2, we have three solutions:

x = 0 , y = 0 ;

x =
√

2 , y = −2 ;

x = −
√

2 , y = −2 .

These yield the three finalists (0, 0), (
√

2,−2), (−
√

2,−2).

At (0, 0),
fxx = 8 , fxy = 0 , fyy = 2 ,

so D = 8 · 2 − 02 = 16 > 0. Since fxx = 8 > 0 this is a local minimum point, and the local minimum
value is f(0, 0) = −1.

At (−
√

2,−2),
fxx = 0 , fxy = −4

√
2 , fyy = 2 ,

and D = 0 · 2− (−4
√

2)2 = −32 < 0 so this is a saddle point.

At (
√

2,−2),
fxx = 0 , fxy = 4

√
2 , fyy = 2 ,

and D = 0 · 2− (4
√

2)2 = −32 < 0 so this is a saddle point.

Answers:

Local minimum point: (0, 0); Local minimum value: −1.

Local maximum points: none ; Local maximum value: none.

Saddle points :(−
√

2,−2) and (
√

2,−2).
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14. (12 points) Find the velocity and position vectors of a particle whose acceleration is a(t) = i + j, and at
t = 0 the velocity is i− j and the position is k.

Solution:
v(t) =

∫
a(t) dt =

∫
(i + j) dt = ti + tj + C

But v(0) = i− j. Plugging-in t = 0 above gives C = i− j. Plugging this value of C back gives

v(t) = ti + tj + i− j = (t+ 1)i + (t− 1)j .

r(t) =
∫

v(t) dt =
∫

((t+ 1)i + (t− 1)j) dt = (
t2

2
+ t)i + (

t2

2
− t)j + C .

Plugging-in t = 0 gives r(0) = C. By the problem r(0) = k, so C = k. Using this value of C we get

r(t) = (
t2

2
+ t)i + (

t2

2
− t)j + k .

Answers: The velocity vector is (t+ 1)i + (t− 1)j or 〈t+ 1, t− 1, 0〉.

The position vector is ( t
2

2 + t)i + ( t
2

2 − t)j + k or 〈 t
2

2 + t, t
2

2 − t, 1〉.
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15. (12 points) Find an equation for the plane through the point (1, 0, 2) that contains the line

r(t) = 〈1, 1, 1〉+ t〈1,−1, 0〉 .

Solutions: We need two directions along the plane. One is obviously the direction vector of our line
a = 〈1,−1, 0〉. Another direction can be gotten by taking any point on our line, for example when t = 0, it
is (1, 1, 1), and computing the direction vector between (1, 0, 2) to (1, 1, 1) that is b = 〈1− 1, 1− 0, 1− 2〉 =
〈0, 1,−1〉. Taking the cross-product of a,b gives

n = a× b = 〈1,−1, 0〉 × 〈0, 1,−1〉 = 〈1, 1, 1〉 .

So n = 〈a, b, c〉 = 〈1, 1, 1〉. Finally, we use the formula a(x− x0) + b(y − y0) + c(z − z0) = 0 with (x0, y0, z0)
being any point on our plane, for example, (1, 0, 2) and we get 1 · (x− 1) + 1 · (y − 0) + 1 · (z − 2) = 0, that
simplifies to x+ y + z = 3.

Ans.: x+ y + z = 3.

16



16. (12 points) Compute the limit
lim

(x,y,z)→(1,1,1)
e−xy sin(πz/2)

or prove that it does not exist.

Solution: The first thing to do is plug-it-in. If everything makes sense (you are not dividing by 0) then
the limit exists and equals to whatever you get!

lim
(x,y,z)→(1,1,1)

e−xy sin(πz/2) = e−1·1 sin(π/2) = e−1 · 1 =
1
e

.

Ans.: 1
e .
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