NAME: (print!) Dr. Z.

Section: 1-6 E-Mail address: zeilberg at math dot rutgers.edu

MATH 251 (1-3), Dr. Z. , FINAL, 8:00-11:00am , Friday, Dec. 15, 2006 [Blue Version]

Do not write below this line

1.	(out of 13) 13	
2.	(out of 13) 13	
3.	(out of 13) 13	
4.	(out of 13) 13	
5.	(out of 13) 13	
6.	(out of 13) 13	

- 7. (out of 13) 13
- 8. (out of 13) 13
- 9. (out of 12) 13
- 10. (out of 12) 12
- 11. (out of 12) 12
- 12. (out of 12) 12
- 13. (out of 12) 12
- 14. (out of 12) 12
- 15. (out of 12) 12
- 16. (out of 12) 12

1. (13 pts.) Find the curvature of the curve $\mathbf{r}(t) = \langle t, t^2, \frac{2}{3}t^3 \rangle$ at the point $(1, 1, \frac{2}{3})$.

Solution:

$$\mathbf{r}'(t) = \langle 1, 2t, 2t^2 \rangle \quad ,$$
$$\mathbf{r}''(t) = \langle 0, 2, 4t \rangle \quad .$$

Since we are interested at the point $(1, 1, \frac{2}{3})$, setting this equal to $\langle t, t^2, \frac{2}{3}t^3 \rangle$, gives t = 1. Now plug-in t = 1, to get

$$\mathbf{r}'(1) = \langle 1, 2, 2 \rangle \quad ,$$

$$\mathbf{r}''(1) = \langle 0, 2, 4 \rangle \quad .$$

The formula for the curvature is:

$$\kappa(t) = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$$

.

.

.

 So

$$\kappa(1) = \frac{|\langle 1, 2, 2 \rangle \times \langle 0, 2, 4 \rangle|}{|\langle 1, 2, 2 \rangle|^3}$$

First we compute the cross the product:

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 2 \\ 0 & 2 & 4 \end{vmatrix} = \mathbf{i} \begin{vmatrix} 2 & 2 \\ 2 & 4 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 1 & 2 \\ 0 & 4 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 1 & 2 \\ 0 & 2 \end{vmatrix}$$
$$= \mathbf{i}(2 \cdot 4 - 2 \cdot 2) - \mathbf{j}(1 \cdot 4 - 0 \cdot 2) + \mathbf{k}(1 \cdot 2 - 2 \cdot 0) = 4\mathbf{i} - 4\mathbf{j} + 2\mathbf{k} = \langle 4, -4, 2 \rangle \quad .$$

 So

$$\begin{split} \kappa(1) &= \frac{|\langle 4, -4, 2 \rangle|}{|\langle 1, 2, 2 \rangle|^3} = \\ \frac{\sqrt{4^2 + (-4)^2 + 2^2}}{(\sqrt{1^2 + 2^2 + 2^2})^3} &= \frac{\sqrt{36}}{(\sqrt{9})^3} = \frac{6}{3^3} = \frac{2}{9} \end{split}$$

Ans.: $\frac{2}{9}$.

2. (13 points) By using Stokes's Theorem, or otherwise, evaluate $\int_C {\bf F} \cdot d{\bf r}$ where

$$F(x, y, z) = yz^2 \mathbf{i} + xz^2 \mathbf{j} + 2xyz \mathbf{k} \quad ,$$

and C is the curve of intersection of the plane x + y + z = 1 and the cylinder $x^2 + y^2 = 9$ oriented counterclockwise as viewed from above. Be sure to explain everything.

Solution: Stokes theorem says that

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int \int curl \, \mathbf{F} \cdot d\mathbf{S} \quad ,$$

where S is any open surface whose boundary is C. But $curl \mathbf{F} = \langle 0, 0, 0 \rangle$ (you do it!), so it does not matter what S is, since the surface-integral of 0 is always 0.

Ans. 0.

3. (13 points) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if

$$x^3 + y^3 + z^3 = 5xyz + 1 \quad .$$

Solution: The easiest way is to use the formulas for implicit differentiation. If F(x, y, z) = 0 then

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$
$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$$

First we make

$$x^3 + y^3 + z^3 = 5xyz + 1$$

into

$$x^3 + y^3 + z^3 - 5xyz - 1 = 0 \quad ,$$

so in this problem

$$F(x, y, z) = x^3 + y^3 + z^3 - 5xyz - 1$$

Now $F_x = 3x^2 - 5yz$, $F_y = 3y^2 - 5xz$, $F_z = 3z^2 - 5xy$, and we have

$$\frac{\partial z}{\partial x} = -\frac{3x^2 - 5yz}{3z^2 - 5xy} \quad ,$$
$$\frac{\partial z}{\partial y} = -\frac{3y^2 - 5xz}{3z^2 - 5xy} \quad .$$

These are the **answers**.

4. (13 points) Find an equation for the tangent plane to the parametric surface:

$$x = u^2$$
 , $y = u + v$, $z = v^2$

,

at the point (1, 2, 1).

Solution: This is a parametric surface. Writing it in vector form we have:

$$\mathbf{r}(u,v) = \langle u^2, u+v, v^2 \rangle.$$

Taking partial derivatives with respect to u and v we have

$$\mathbf{r}_u = \langle 2u, 1, 0 \rangle \quad ,$$

 $\mathbf{r}_v = \langle 0, 1, 2v
angle \quad .$

What are the actual values of u and v at our point (1, 2, 1)?. Solving $1 = u^2, 2 = u + v, 1 = v^2$ gives u = 1 and v = 1. Plugging-in u = 1 and v = 1 above we get

$$\mathbf{r}_{u}(1,1) = \langle 2, 1, 0 \rangle \quad ,$$
$$\mathbf{r}_{v}(1,1) = \langle 0, 1, 2 \rangle \quad .$$

Now a **normal vector** is $\mathbf{r}_u \times \mathbf{r}_v$. Taking cross-product

$$\langle 2, 1, 0 \rangle \times \langle 0, 1, 2 \rangle = \langle 2, -4, 2 \rangle$$

The equation of plane with normal vector $\langle a, b, c \rangle$ passing through a point (x_0, y_0, z_0) is $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$. So the equation of the tangent plane is:

$$2(x-1) - 4(y-2) + 2(z-1) = 0 \quad .$$

Dividing by 2 gives:

$$(x-1) - 2(y-2) + (z-1) = 0$$
.

Simplifying, gives: x - 1 - 2y + 4 + z - 1 = 0, which is x - 2y + z + 2 = 0, or z = -x + 2y - 2.

Ans.: x - 2y + z + 2 = 0, or z = -x + 2y - 2.

5. (13 points) Change the order of integration in

$$\int_1^2 \int_0^{\ln x} f(x,y) \, dy \, dx \quad .$$

Solution: This iterated integral, of type-I, can be written as the **double-integral** $\int \int_D f(x, y) dy dx$, where D is the region

$$D = \{ (x, y) \mid 1 \le x \le 2, \ 0 \le y \le \ln x \}.$$

This is a "triangle-like" region with vertices (1,0), (2,0), and $(2,\ln 2)$. We have to express it as a type-II region. Its projection on the *y*-axis is the interval $0 < y < \ln 2$. This is the "main-road". A typical horizontal cross-section starts at the curve $y = \ln x$, which we now write as $x = e^y$ and ends at the vertical line x = 2, so the region *D*, written in type-II style is

$$D = \{(x, y) \mid 0 \le y \le \ln 2, e^y \le x \le 2\},\$$

and our double-integral in dx dy-type is

$$\int_0^{\ln 2} \int_{e^y}^2 f(x,y) \, dx \, dy \quad .$$

Ans.: $\int_0^{\ln 2} \int_{e^y}^2 f(x, y) \, dx \, dy$.

6. (13 points) Let

$$\mathbf{F}(x, y, z) = \\ \langle \cos(\sqrt{1+x} + x^3), \tan((1 + \cos(\sqrt{1+x} + x^3))^7), \tan^{-1}((e^{x^2} + \cos(\sqrt{1+x} + x^3))^7) \rangle$$

and let $\langle P, Q, R \rangle = curl \mathbf{F}$. Compute

$$\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \quad .$$

Be sure to explain everything.

Solution: $\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$ is $div\langle P, Q, R \rangle$. Since $\langle P, Q, R \rangle = curl \mathbf{F}$, what we need is $div\langle P, Q, R \rangle = div curl \mathbf{F}$. But $div curl \mathbf{F}$ is always 0 no matter what \mathbf{F} is, so the answer is 0.

Ans.: 0.

7. (13 points) Let C be the line segment from (0,1) to (3,5), find $\int_C 2xy \, ds$.

Solution: The parametric equation for the line-segment joining (0,1) and (3,5) is

$$\mathbf{r}(t) = (1-t)\langle 0, 1 \rangle + t\langle 3, 5 \rangle = \langle 3t, 1+4t \rangle$$

So x = 3t and y = 1 + 4t. We have $ds = |\mathbf{r}'(t)|dt$. Since $\mathbf{r}'(t) = \langle 3, 4 \rangle$, $ds = |\langle 3, 4 \rangle|dt = \sqrt{3^2 + 4^2}dt = 5dt$. How line-integral becomes the definite integral

$$\int_C 2xy \, ds = \int_0^1 2(3t)(1+4t) \, 5 \, dt = 30 \int_0^1 t(1+4t) \, dt = 30 \int_0^1 t + 4t^2 \, dt = 30 \left(\frac{t^2}{2} + \frac{4t^3}{3}\right) \Big|_0^1 = 30 \left(\frac{1}{2} + \frac{4}{3} - 0\right) = 30 \cdot \frac{11}{6} = 55 \quad .$$

Ans.: 55.

8. (13 points) Evaluate

$$\int_C (5y - \sin(e^x)) \, dx + (10x - e^{\cos^2 y}) \, dy \quad ,$$

where C is the closed curve consisting of the boundary of the rectangle

$$\{ (x, y) \, | \, 0 \le x \le 4 \, , \, 0 \le y \le 3 \, \}$$

Solution: Use Green's Theorem:

$$\int_C P \, dx + Q \, dy = \int \int_D (Q_x - P_y) \, dA \quad ,$$

where D is the region that is **inside** C. In our case D is the above rectangle.

In this problem $P = 5y - sin(e^x)$ and $Q = 10x - e^{\cos^2 y}$. $Q_x = 10$ and $P_y = 5$, so $Q_x - P_y = 5$ and the desired answer is $\int \int_D 5 \, dA$, that can be done directly, but more efficiently equals $5 \int \int_D dA$ which is 5 times the area of the rectangle, which is $3 \cdot 4 = 12$. So the answer is $5 \cdot 12 = 60$.

Ans.: 60.

9. (12 points) Find the Jacobian of the transformation

$$x = u + v + w$$
 , $y = u^2 + v^2 + w^2$, $z = u^3 + v^3 + w^3$.

Solution: The Jacobian is:

$$\begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 2u & 2v & 2w \\ 3u^2 & 3v^2 & 3w^2 \end{vmatrix}$$

$$= 1 \cdot \begin{vmatrix} 2v & 2w \\ 3v^2 & 3w^2 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2u & 2w \\ 3u^2 & 3w^2 \end{vmatrix} + 1 \cdot \begin{vmatrix} 2u & 2v \\ 3u^2 & 3v^2 \end{vmatrix}$$

$$= [(2v)(3w^2) - (2w)(3v^2)] - [(2u)(3w^2) - (2w)(3u^2)] + [(2u)(3v^2) - (2v)(3u^2)]$$

$$= 6(uv^2 - uw^2 - vu^2 + vw^2 + wu^2 - wv^2) \quad .$$

Ans.: $6(uv^2 - uw^2 - vu^2 + vw^2 + wu^2 - wv^2)$.

Remark: Using algebra, this can be factored to be 6(v - u)(w - u)(w - v).

10. (12 points) Set-up but do not evaluate, a triple iterated integral for the volume of the solid bounded by the cylinder $y = x^2$ and planes z = 0 and y + z = 1.

Solution: The surface y + z = 1 (that happens to be a plane) can be written, explicitly, as z = 1 - y. To see where it meets the *xy*-plane we set z = 0 and get 1 - y = 0, which is y = 1. So the projection of our 3D region on the *xy*-plane is the region bounded by $y = x^2$ and y = 1 (draw it). The full region can be written as

$$E = \{(x, y, z) \mid -1 \le x \le 1, x^2 \le y \le 1, 0 \le z \le 1 - y\}$$

The volume is the **volume-integral** $\int \int \int_E 1 \, dV$, and writing it as an iterated integral gives

$$\int_{-1}^{1} \int_{x^2}^{1} \int_{0}^{1-y} dz \, dy \, dx \quad .$$

This is the **answer**.

11. (12 points) Use Lagrange multipliers (no credit for other methods!) to find the largest value that xyz can be, given that x + y + z = 3.

Solution: f = xyz, g = x + y + z - 3. $\nabla f = \langle yz, xz, xy \rangle$, $\nabla g = \langle 1, 1, 1 \rangle$. Setting $\nabla f = \lambda \nabla g$, we get $\langle yz, xz, xy \rangle = \langle \lambda, \lambda, \lambda \rangle$. We have to solve the system of four equations and four unknowns.

$$yz = \lambda$$
 , $xz = \lambda$, $xy = \lambda$, $x+y+z = 3$.

One possibility is $\lambda = 0$ then we get the solutions

If $\lambda \neq 0$, then none of x, y, z are 0, and we can divide the second equation by the first, getting y = x, and the third equation by the second getting, y = z, so x = y = z, and plugging-in into the last equation gives 3x = 3 which means that x = 1, and so y = 1 and z = 1.

The finalists are (x, y, z) = (3, 0, 0), (x, y, z) = (0, 3, 0), (x, y, z) = (0, 0, 3), and (x, y, z) = (1, 1, 1). Plugginginto f(x, y, z) = xyz, we get f(3, 0, 0) = 0, f(0, 3, 0) = 0, f(0, 0, 3) = 0, and f(1, 1, 1) = 1. The biggest among these is 1, so this is the **maximum value**.

Ans.: 1.

12. (12 points) Find an equation of the tangent plane to the surface $z = e^{2x-3y}$ at the point (3,2,1).

Solution: Here the surface is given **explicitly** z = f(x, y), where $f(x, y) = e^{2x-3y}$. The relevant formula is

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

But first let's make sure that the problem makes sense, i.e. that the point (3, 2, 1) lies on our surface. $f(3, 2) = e^{2(3)-3(2)} = e^0 = 1$, so it is OK.

No $f_x(x,y) = 2e^{2x-3y}$, $f_y(x,y) = -3e^{2x-3y}$, so $f_x(3,2) = 2$, $f_y(3,2) = -3$, and since $x_0 = 3, y_0 = 2, z_0 = 1$, the equation of the tangent plane is:

$$z - 1 = 2(x - 3) - 3(y - 2) = 2x - 3y$$

Simplifying, we get z = 2x - 3y + 1.

Ans.: z = 2x - 3y + 1.

13. (12 points) Find the local maximum and minimum points, the local maximum and minimum values, and saddle point(s) of the function $f(x, y) = 4x^2 + y^2 + 2x^2y - 1$.

Solution:

$$f_x = 8x + 4xy$$
 , $f_y = 2y + 2x^2$

For future reference,

$$f_{xx} = 8 + 4y$$
 , $f_{xy} = 4x$, $f_{yy} = 2$

We have to solve $f_x = 0, f_y = 0$, in other words the system

$$8x + 4xy = 0 \quad , \quad 2y + 2x^2 = 0 \quad .$$

From the second equation we get $y = -x^2$ always. Plugging this into the first equation gives $4x(2+y) = 4x(2-x^2) = 0$, whose solutions are x = 0, $x = -\sqrt{2}$, $x = \sqrt{2}$. Using $y = -x^2$, we have three solutions:

 $\begin{array}{rl} x=0 &, & y=0 &; \\ x=\sqrt{2} &, & y=-2 &; \\ x=-\sqrt{2} &, & y=-2 &. \end{array}$

These yield the three **finalists** (0,0), $(\sqrt{2},-2)$, $(-\sqrt{2},-2)$.

At (0, 0),

$$f_{xx} = 8 \quad , \quad f_{xy} = 0 \quad , \quad f_{yy} = 2$$

so $D = 8 \cdot 2 - 0^2 = 16 > 0$. Since $f_{xx} = 8 > 0$ this is a **local minimum point**, and the local minimum value is f(0,0) = -1.

,

At
$$(-\sqrt{2}, -2)$$
,
 $f_{xx} = 0$, $f_{xy} = -4\sqrt{2}$, $f_{yy} = 2$

and $D = 0 \cdot 2 - (-4\sqrt{2})^2 = -32 < 0$ so this is a saddle point.

At
$$(\sqrt{2}, -2)$$
,

$$f_{xx} = 0$$
 , $f_{xy} = 4\sqrt{2}$, $f_{yy} = 2$,

and $D = 0 \cdot 2 - (4\sqrt{2})^2 = -32 < 0$ so this is a **saddle point**.

Answers:

Local minimum point: (0,0); Local minimum value: -1.

Local maximum points: none ; Local maximum value: none.

Saddle points $(-\sqrt{2}, -2)$ and $(\sqrt{2}, -2)$.

14. (12 points) Find the velocity and position vectors of a particle whose acceleration is $\mathbf{a}(t) = \mathbf{i} + \mathbf{j}$, and at t = 0 the velocity is $\mathbf{i} - \mathbf{j}$ and the position is \mathbf{k} .

Solution:

$$\mathbf{v}(t) = \int \mathbf{a}(t) dt = \int (\mathbf{i} + \mathbf{j}) dt = t\mathbf{i} + t\mathbf{j} + \mathbf{C}$$

But $\mathbf{v}(0) = \mathbf{i} - \mathbf{j}$. Plugging-in t = 0 above gives $\mathbf{C} = \mathbf{i} - \mathbf{j}$. Plugging this value of \mathbf{C} back gives

 $\mathbf{v}(t) = t\mathbf{i} + t\mathbf{j} + \mathbf{i} - \mathbf{j} = (t+1)\mathbf{i} + (t-1)\mathbf{j}$.

$$\mathbf{r}(t) = \int \mathbf{v}(t) \, dt = \int ((t+1)\mathbf{i} + (t-1)\mathbf{j}) \, dt = (\frac{t^2}{2} + t)\mathbf{i} + (\frac{t^2}{2} - t)\mathbf{j} + \mathbf{C}$$

Plugging-in t = 0 gives $\mathbf{r}(0) = \mathbf{C}$. By the problem $\mathbf{r}(0) = \mathbf{k}$, so $\mathbf{C} = \mathbf{k}$. Using this value of C we get

$$\mathbf{r}(t) = (\frac{t^2}{2} + t)\mathbf{i} + (\frac{t^2}{2} - t)\mathbf{j} + \mathbf{k}$$

.

Answers: The velocity vector is $(t+1)\mathbf{i} + (t-1)\mathbf{j}$ or $\langle t+1, t-1, 0 \rangle$.

The position vector is $(\frac{t^2}{2}+t)\mathbf{i} + (\frac{t^2}{2}-t)\mathbf{j} + \mathbf{k}$ or $\langle \frac{t^2}{2}+t, \frac{t^2}{2}-t, 1 \rangle$.

15. (12 points) Find an equation for the plane through the point (1, 0, 2) that contains the line

$$\mathbf{r}(t) = \langle 1, 1, 1 \rangle + t \langle 1, -1, 0 \rangle \quad .$$

Solutions: We need two directions **along the plane**. One is obviously the direction vector of our line $\mathbf{a} = \langle 1, -1, 0 \rangle$. Another direction can be gotten by taking any point on our line, for example when t = 0, it is (1, 1, 1), and computing the direction vector between (1, 0, 2) to (1, 1, 1) that is $\mathbf{b} = \langle 1 - 1, 1 - 0, 1 - 2 \rangle = \langle 0, 1, -1 \rangle$. Taking the **cross-product** of \mathbf{a}, \mathbf{b} gives

$$\mathbf{n} = \mathbf{a} \times \mathbf{b} = \langle 1, -1, 0 \rangle \times \langle 0, 1, -1 \rangle = \langle 1, 1, 1 \rangle$$
.

So $\mathbf{n} = \langle a, b, c \rangle = \langle 1, 1, 1 \rangle$. Finally, we use the formula $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$ with (x_0, y_0, z_0) being any point on our plane, for example, (1, 0, 2) and we get $1 \cdot (x - 1) + 1 \cdot (y - 0) + 1 \cdot (z - 2) = 0$, that simplifies to x + y + z = 3.

Ans.: x + y + z = 3.

16. (12 points) Compute the limit

$$\lim_{(x,y,z)\to(1,1,1)} e^{-xy} \sin(\pi z/2)$$

or prove that it does not exist.

Solution: The first thing to do is **plug-it-in**. If everything makes sense (you are not dividing by 0) then the limit exists and equals to whatever you get!

$$\lim_{(x,y,z)\to(1,1,1)} e^{-xy} \sin(\pi z/2) = e^{-1\cdot 1} \sin(\pi/2) = e^{-1}\cdot 1 = \frac{1}{e} \quad .$$

Ans.: $\frac{1}{e}$.