MATH 251 (1-3), Dr. Z., Mid-Term \#1, 10:20-11:40, Thu., Oct. 12, 2006

1. Find an equation for the plane that passes through the points

$$
(2,2,0) \quad, \quad(2,0,2) \quad, \quad(0,2,2)
$$

2. Find parametric equations for the line through the point $(1,2,0)$ that is parallel to the plane $x+y+z=-4$ and perpendicular to the line $x=1+t, y=1-t, z=t$.
3. Find the curvature of the curve

$$
\mathbf{r}(t)=\left\langle e^{t} \cos t, e^{t} \sin t, t\right\rangle
$$

at the point $(1,0,0)$.
4. What force is required so that a particle of mass 100 kg has the position function

$$
\mathbf{r}(t)=\left\langle t^{4}, \sin t, \cos 3 t\right\rangle
$$

5. Find the following limit, if it exists, or show that it does not exist:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}+5 y^{4}}{\left(x^{2}+3 y^{2}\right)^{2}}
$$

6. Find the linear approximation to the function

$$
f(x, y, z)=\frac{1}{\sqrt{x+y+z}}
$$

at the point $(1,2,1)$, and use it to approximate $f(1,1.9,0.9)$.
7. Use the chain rule to find $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$, if

$$
w=x^{2}+y^{2}+z^{2} \quad, \quad x=s t \quad, \quad y=s \cos t \quad, \quad z=s \sin t
$$

when $s=1$ and $t=0$.
8. Find the maximum rate of change of $f(x, y, z)=x^{2} y^{3} z^{4}$ at the point $(1,1,1)$, and the direction in which it occurs.
9. Use implicit differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if

$$
x z=\ln (y+z)
$$

10. Find an equation of the tangent plane to the surface

$$
z=e^{x^{3}+y^{3}}
$$

at the point $(1,-1,1)$.

