MATH 251 (4-6), Dr. Z. , Mid-Term \#1, 12:00-1:20pm , Thu., Oct. 12, 2006

1. Find an equation for the plane that passes through the point

$$
(-1,2,1)
$$

and contains the line of intersection of the planes

$$
x+y-z=2 \quad, \quad 2 x-y+3 z=1
$$

2. Determine whether the planes are parallel, perpendicular or neither. If neither find the angle between them.

$$
x+4 y-3 z=1 \quad, \quad-3 x+6 y+7 z=4
$$

3. Find the arclength of the curve

$$
\mathbf{r}(t)=\left\langle 2 \sqrt{2} t, e^{2 t}, e^{-2 t}\right\rangle \quad, \quad 0 \leq t \leq 1
$$

4. A particle of mass 100 kg is moving thanks to a force

$$
\mathbf{F}=\langle 100,200,100\rangle
$$

At $t=0$, it is at the point $(1,2,3)$ moving at a velocity $\langle 1,2,-1\rangle$. Find its position at $t=5$.
5. Find the following limit, if it exists, or show that it does not exist:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{5}+y^{5}}{\left(x^{2}+y^{2}\right)^{2}}
$$

6. Find an equation for the tangent plane of the surface

$$
z=\frac{1}{\sqrt{x+y}}
$$

at $(2,2,1 / 2)$.
7. Use the chain rule to find $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$, if

$$
w=x^{3} y^{2} \quad, \quad x=s^{2} t+1 \quad, \quad y=t^{2} s+3 .
$$

8. Find the directional derivative of the function

$$
g(x, y, z)=(x+2 y+3 z)^{3 / 2}
$$

at the point $(-1,1,1)$, in the direction of the vector $\langle 1,2,2\rangle$.
9. Use implicit differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if

$$
x^{2}+y^{2}+z^{2}=3 x y z
$$

10. Find the linearization, $L(x, y)$, of

$$
f(x, y)=x \cos (3 x-2 y)
$$

at the point $(2,3)$.

