
Complete SOLUTIONS to:

MATH 251 (1-3), Dr. Z. , Mid-Term #2, 10:20-11:40 , Mon., Nov. 20, 2006

1. Determine whether or not

F = (exy − cos(x+ y) + 1)i + (ex − cos(x+ y) + 1)j

is a conservative vector field. If it is, find a function f that F = 5f .

Ans.: F is: conservative.

(If applicable): f = exy − sin(x+ y) + x+ y

Solution to First Part of 1.

Recall that the condition for F = P i +Q j (or F = 〈P,Q〉) to be conservative is

∂P

∂y
=
∂Q

∂x
.

In this problem,

P = exy − cos(x+ y) + 1 , Q = ex − cos(x+ y) + 1 ,

∂P

∂y
=

∂

∂y
[exy − cos(x+ y) + 1] = ex + sin(x+ y) ,

∂Q

∂x
=

∂

∂x
[ex − cos(x+ y) + 1] = ex + sin(x+ y) ,

Since these are the same, F is indeed conservative.

Solution to Second Part of 1. We have to find the (so-called potential function) f(x, y) such
that 5f = F. That means 〈 fx , fy 〉 = 〈P,Q 〉. Spelling-out,

fx = P , fy = Q .

Let’s first try to make the first equation happy. The derivative of f with respect to the variable x
is P . So f is the anti-derivative of P w.r.t. to x:

f =
∫

(exy − cos(x+ y) + 1) dx = exy − sin(x+ y) + x+ g(y) ,

(we used the fact that
∫

cos(x + a) dx = sin(x + a) + C and
∫

1 dx = x + C. The g(y) plays the
role of the “arbitrary constant”, since this was an integration with respect to x, so g is constant
from the point of view of the variable x, but of course usually depends on y.
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So we can say that we “almost” know what f is explicitly:

f = exy − sin(x+ y) + x+ g(y) . (TentativeFormForf(x, y))

All we need is to figure out what g(y) is. Once we will know that, we would have to backtrack
into the above equation.

In order to find what g(y) is we need to make the second equation:

fy = Q ,

come true. Using the above tentative form of f(x, y), we get that fy equals

fy = ex − cos(x+ y) + g′(y) .

Setting this equal to Q, yields

ex − cos(x+ y) + g′(y) = ex − cos(x+ y) + 1 .

Using algebra, we get g′(y) = 1. To get g(y) we find the anti-derivative (alias indefinite integral)
w.r.t. to y to get g(y) =

∫
1 · dy = y +C (but you really don’t care about the C, so you can make

it 0), so g(y) = y. Now going back to TentativeFormForf(x, y), and implementing the newly
found g(y), we get

f = exy − sin(x+ y) + x+ y , (FinalFormForf(x, y))

Ans. to Second Part of (1): f = exy − sin(x+ y) + x+ y.
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2. Evaluate the line integral ∫
C

F · dr ,

where C is given by the vector function r(t).

F(x, y, z) = yi + xj + zk ,

r(t) = ti + t2j + 2tk , 0 ≤ t ≤ 1 .

Ans.: 3. [type number].

Solution to 2.: This is a line-integral of the vector-field kind, where the inputs are a vector-
field and a curve and the output is a number. It can be written in long-hand as∫

C

P dx+Qdy +Rdz

(where F = 〈P,Q,R〉). Please do not confuse with the other kind of line-integral whose inputs are
a function f(x, y, z) and a curve and looks like∫

C

f(x, y, z) ds ,

featuring the arc-length differential ds which is ds = |r′(t)| dt. In this problem we do not need
|r′(t)|.

Going back to our problem
P = y , Q = x , R = z ;

x = t , y = t2 , z = 2t ;

dx = dt , dy = (2t) dt , dz = 2 dt .

Plugging-in everything∫
C

P dx+Qdy +Rdz =
∫ 1

0

(t2) dt+ (t)(2t) dt+ (2t)(2) dt =
∫ 1

0

[t2 + 2t2 + 4t] dt

=
∫ 1

0

[3t2 + 4t] dt = t3 + 2t2
∣∣∣1
0
= 13 + 2(1)2 − 0 = 1 + 2 = 3.

Ans. to 2.: 3 [type number].

Comments: Some clever people found a short-cut. They took a chance that F was conservative
(by now you know how to decide it beforehand by taking curlF and seeing whether it is the 0
vector). Anyway, in this (lucky!, it does not always happen, in which case you must do it the direct
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way as above) case, you can find that the potential function f is f(x, y, z) = xy + z2/2. The start
of our curve (plug-in t = 0 into r) is the point (0, 0, 0). The end of our curve (plug-in t = 1 into r)
is (1, 1, 2), so using the Fundamental Theorem of Line-Integrals, we get:∫

C

F · dr = f(1, 1, 2)− f(0, 0, 0) = 1 · 1 + 22/2− 0 = 3 .

The second way is perfectly correct, and the few (clever) people who did it (correctly) got full
credit.

Common mistakes:

1. Confuse with the other kind of line integrals and computing |r′(t)| which is completely irrelevant.

2. There is lots of plugging-in to do in this problem, some people were sloppy and plugged-in wrong
things.
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3. Evaluate ∫ ∫ ∫
E

7(x2 + y2)2 dV ,

where E is the solid that lies within the cylinder x2 + y2 = 4, above the plane z = 0, and below
the cone z2 = 9x2 + 9y2.

Ans.: 768π [type number].

Solution to 3. This calls for cylindrical coordinates. All we need from the dictionary is that the
‘phrase’ x2 + y2 equals r2 and that dV = r dz dr dθ.

The “floor-plan” is the inside of the circle x2 + y2 = 22. which in cylindrical (or polar) is r = 2 and
so θ takes the default range 0 ≤ θ ≤ 2π. Our solid goes from the floor up to z2 = 9x2 + 9y2 which
is z2 = 9r2 i.e. z = ±3r but everything is above the plane z = 0 so we discard the minus-option
and get that the range in z is 0 ≤ z ≤ 3. So the description of the region of volume-integration
in cylindrical coordinates is:

E = {(r, θ, z) | 0 ≤ θ ≤ 2π , 0 ≤ r ≤ 2 , 0 ≤ z ≤ 3r } .

And our triple-integral becomes the iterated-integral∫ 2π

0

∫ 2

0

∫ 3r

0

7(r2)2r dz dr dθ

=
∫ 2π

0

∫ 2

0

∫ 3r

0

7r5 dz dr dθ .

The inside-integral is:∫ 3r

0

7r5 dz = 7r5

∫ 3r

0

dz = 7r5

(
[z]
∣∣∣3r
0

)
= 7r5 · (3r) = 21r6 .

The middle-integral is: ∫ 2

0

[AnswerToInnerIntegral] dr .

∫ 2

0

[21r6] dr = 21
r7

7

∣∣∣2
0
= 3r7

∣∣∣2
0
= 3(2)7 − 3(0)7 = 3 · 27 = 384.

The outside-integral is

=
∫ 2π

0

[AnswerToMiddleIntegral]dθ =
∫ 2π

0

[384]dθ = 384
∫ 2π

0

dθ = 384[θ]
∣∣∣2π
0

= 384(2π−0) = 768π.

Ans. to 3.: 768π [type number].
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4. Evaluate the iterated integral∫ 1

0

∫ 2x

x

∫ x+y

0

(6x+ 6y) dz dy dx .

Ans.: 19
2 [type number].

Solution to 4.: First we do the inner-integral∫ x+y

0

(6x+ 6y) dz = 6(x+ y)
∫ x+y

0

1 dz = 6(x+ y)
(
z
∣∣∣x+y

0

)
= 6(x+ y)2 .

Now we do the middle-integral:∫ 2x

x

[AnswerToInnerIntegral]dy =
∫ 2x

x

[6(x+ y)2]dy = 6
(x+ y)3

3

∣∣∣2x
x

=

2(x+ y)3
∣∣∣2x
x

= 2(x+ 2x)3 − 2(x+ x)3 = 2(3x)3 − 2(2x)3 = 2(27x3 − 8x3) = 2(27− 8)x3 = 38x3 .

Note: Here we used the “canned-formula”∫
(ay + b)n dy =

(ay + b)n+1

(n+ 1)a
.

This is much faster than expanding (x + y)2 into x2 + 2xy + y2 and doing it one-piece-at-a-time.
Even the best-performing students (who got perfect score) did it the “long way”).

Finally the answer to the outside integral (which is the final answer) is:∫ 1

0

[AnswerToMiddleIntegral]dx =
∫ 1

0

[38x3]dx = 38
x4

4

∣∣∣1
0
=

19
2
x4
∣∣∣1
0
=

19
2

(14 − 04) =
19
2

.

Ans.: 19
2 [type number].

Common Mistakes: If you do it the long way the algebra is messy and it is easy to mess-up
somewhere in the calculations.
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5. Use the given transformation to evaluate the integral∫ ∫
R

4(2x+ y)2 dA ,

where R is the triangular region with vertices (0, 0),(2,−3), (3,−5); x = 3u− v, y = −5u+ 2v.

Ans.: 1 [type number].

Solution to 5.: The Jacobian is:

J =
∣∣∣∣ ∂x∂u ∂x

∂v
∂y
∂u

∂y
∂v

∣∣∣∣ =
∣∣∣∣ 3 −1
−5 2

∣∣∣∣ = (3)(2)− (−1)(−5) = 1 .

We now have to find the counterparts of the three vertices in the (u, v)-plane.

For the point (0, 0), solving
3u− v = 0 , −5u+ 2v = 0 ,

we get u = 0, v = 0 (you do it!), so (0, 0) corresponds to (0, 0).

For the point (2,−3), solving

3u− v = 2 , −5u+ 2v = −3 ,

we get u = 1, v = 1 (you do it!), so (2,−3) corresponds to (1, 1).

For the point (3,−5), solving

3u− v = 3 , −5u+ 2v = −5 ,

we get u = 1, v = 0 (you do it!), so (3,−5) corresponds to (1, 0).

Now we have a much simpler triangle!

(Note: the point is that the new vertices, and triangle, are much simpler than the original, if you
get complicated points (because you messed-up the algebra!) it means that something is fishy and
you should check your work.)

We also have to convert the integrand from the (x, y)-language to the (u, v)-language:

4(2x+ y)2 = 4(2[3u− v] + [−5u+ 2v])2 = 4(6u− 2v − 5u+ 2v)2 = 4u2 .

So using multi-variable change-of-variables we get∫ ∫
R

4(2x+ y)2 dA =
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=
∫ ∫

R′
J · 4u2 dA =

=
∫ ∫

R′
1 · 4u2 dA =

∫ ∫
R′

4u2 dA .

where R′ is the simplified triangle in the (u, v)-plane whose vertices are (0, 0), (1, 0), (1, 1). Draw-
ing it (do it!), it is simpler to express it as a type I region:

R′ = {(u, v) | 0 ≤ u ≤ 1 , 0 ≤ v ≤ u} .

Our (simplified) double-integral becomes the iterated integral∫ 1

0

∫ u

0

4u2 dv du .

The inner-integral is:∫ u

0

4u2 dv = 4u2

∫ u

0

dv = 4u2[v
∣∣∣u
0
] = 4u2[u− 0] = 4u3 .

The outside-integral (and the final answer) is:∫ 1

0

[AnswerToInnerIntegral] du =
∫ 1

0

[4u3] du = u4
∣∣∣1
0
= 14 − 04 = 1 .

Ans.: 1 [type number].

Some Mistakes People Made

1. Mess-up the (easy!) computation of the Jacobian (3)(2) − (−1)(−5) and thinking that is is 11
(by miscounting the number of minus-signs).

2. Forget about the Jacobian altogether. In this problem they “lucked-out” since the Jacobian
happens (by chance) to be 1 so they got the right answer, but I still took points off, since usually
this does not happen.

3. Mess-up the algebra and get complicated ( and wrong, of course) regions and waste lots of time
in doing a much too complicated problem. Please use your common sense, if it is getting too
complicated, you are probably on the wrong track.

4. Trying to do it directly staying in the (x, y)-plane. They got no (or little) credit, since you were
asked to do it with the suggested method. Besides none of them succeeded since doing it directly
is much more complicated!
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6. Evaluate the iterated integral by converting to polar coordinates.∫ 1

0

∫ √1−x2

−
√

1−x2
xy2 dy dx

Ans.: 2
15 [type number].

Solution to 6.: The region of integration, in the usual rectangular coordinates is:

E = {(x, y) | 0 ≤ x ≤ 1 , −
√

1− x2 ≤ y ≤
√

1− x2} .

If you draw it (do it!), you will see that it is the inside of a semi-circle, center origin, radius 1,
that lies in the right half-plane (since x goes from 0 to 1, hence is always positive). This region,
in polar coordinates is expressed as

E = {(r, θ) | − π/2 ≤ θ ≤ π/2 , 0 ≤ r ≤ 1} .

Converting our integral to polar, using the dictionary

x = r cos θ , y = r sin θ , dA = r dr dθ ,

we get that our integral is ∫ π/2

−π/2

∫ 1

0

(r cos θ)(r sin θ)2 r dr dθ

=
∫ π/2

−π/2

∫ 1

0

r4 sin2 θ cos θdr dθ .

The inner-integral is:

sin2 θ cos θ
∫ 1

0

r4dr = sin2 θ cos θ
r5

5

∣∣∣1
0
=

1
5

sin2 θ cos θ .

The outer-integral (and the final answer is):∫ π/2

−π/2
[AnswerToInnerIntegral] dθ =

∫ π/2

−π/2

1
5

sin2 θ cos θ dθ .

Using the substitution u = sin θ (so cos θ dθ = du and the limits are sin(−π/2) = −1 and
sin(π/2) = 1) this equals

1
5

∫ 1

−1

u2 du =
1
5
u3

3

∣∣∣1
−1

=
1
15

(13 − (−1)3) =
2
15

.

Ans.: 2
15 [type number].
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7. Evaluate the iterated integral ∫ 4

0

∫ 2

y/2

ex
2
dx dy .

(Hint: Not even Dr. Z. can do
∫
ex

2
dx, so you must be clever!)

Ans.: e4 − 1 [type number].

Solution to 7.: The region of integration, let’s call D is

D = {(x, y) | 0 ≤ y ≤ 4 , y/2 ≤ x ≤ 2}

This is expressed in type II-style. If you draw it (do it!), you would get a triangle whose vertices
are (0, 0), (2, 0), and (2, 4). Note that the hypotenuse is the line y = 2x. Expressing D as a type
I region, we get

D = {(x, y) | 0 ≤ x ≤ 2 , 0 ≤ y ≤ 2x} .

So our integral, written in type I-style is the iterated integral∫ 2

0

∫ 2x

0

ex
2
dy dx .

The inner-integral is:∫ 2x

0

ex
2
dy = ex

2
∫ 2x

0

dy = ex
2
(
y
∣∣∣2x
0

)
= ex

2
(2x− 0) = 2xex

2
.

The outer-integral is;∫ 2

0

[AnswerToInnerIntegral] dx =
∫ 2

0

ex
2

(2xdx) .

This is done with the substitution u = x2 so du = 2x dx, x = 0 becomes u = 02 = 0 and x = 2
becomes u = 22 = 4. Our integral in the u-language is:∫ 4

0

eu du = eu
∣∣∣4
1
= e4 − e0 = e4 − 1 .

Ans: e4 − 1 [type number].

Some Mistakes People Made: 1. Try to do it directly (hopeless!). 2. Draw the wrong picture
and mess-up the integration limits. 3. Unable to do the integral

∫
2xex

2
(some people tried

integration-by-parts, which is not the right way for this integral).
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8. Calculate the double integral ∫ ∫
R

3xy2

x2 + 1
dA ,

R = {(x, y) | 0 ≤ x ≤ 1 , −1 ≤ y ≤ 1 } .

Ans.: ln 2 [type number].

Solution to 8.: Converting the given double-integral into an iterated integral we get:∫ 1

0

∫ 1

−1

3xy2

x2 + 1
dydx .

The inner integral is ∫ 1

−1

3xy2

x2 + 1
dy =

3x
x2 + 1

∫ 1

−1

y2 dy

=
3x

x2 + 1
y3

3

∣∣∣1
−1

=
x

x2 + 1
(13 − (−1)3) =

2x
x2 + 1

.

The outer integral is ∫ 1

0

[AnswerToInnerIntegral]dx =
∫ 1

0

2x
x2 + 1

dx .

This is done with the substitution u = x2 +1 so du = 2x dx, x = 0 becomes u = 1, x = 1 becomes
u = 2 and we have ∫ 1

0

2x dx
x2 + 1

=
∫ 2

1

1
u
du = ln |u|

∣∣∣2
1
= ln 2− ln 1 = ln 2.

Ans.: ln 2 [type number].

Short Cut: This integral falls under the type of∫
dCabin

Cabin
= logCabin .

[In advanced math log means ln].∫ 1

0

2x
x2 + 1

dx =
∫ 1

0

d(x2 + 1)
x2 + 1

= ln |x2 + 1|
∣∣∣1
0
= ln 2− ln 1 = ln 2.

Some Mistakes People Made: 1. Forgot how to do the simple integration
∫

2x
x2+1 dx. Some

tried integration-by-parts and some used their own illegal “product-rule”: e.g.∫ 1

0

2x
x2 + 1

dx =
(∫ 1

0

(2x)dx
)(∫ 1

0

1
x2 + 1

dx

)
.

Remember: if you are stuck, admit it, and don’t lose important points (or have the chance of killing
people) by “winging it”.
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9. Use Lagrange multipliers to find the maximum and minimum values of the function f(x, y) = xy2

subject to the constraint 2x2 + y2 = 6.

maximum value: 4 [type number].

minimum value: −4 [type number].

Solution to 9.: f = xy2, g = 2x2 + y2. Here 5f = 〈y2 , 2xy〉 5g = 〈4x , 2y〉. We need to solve
5f = λ5 g plus the constraint equation 2x2 + y2 = 6. This means that we have to solve the
system

y2 = 4λx , 2xy = 2λy , 2x2 + y2 = 6 .

It is a good idea to exploit the first two equations first. Dividing the first equation by the second,
we get:

y2

2xy
=

4λx
2λy

.

(When we divide , we have to explore separately the possibility that the thing we divide by is 0, in
this case 2xy = 0 means x = 0 or y = 0. x = 0 does not yield anything, but y = 0 yields x = ±

√
3,

so in addition to the solutions that are coming up, we have to include (−
√

3, 0) and (
√

3, 0) below).

Simplifying
y

2x
=

2x
y

.

(Note: of course when we divide we must not divide by zero so we have to rule out the case that x
and/or y are zero, but it is easy to see that it can never happen because of the last equation).

Cross-multiplying:
y2 − (2x)2 = 0 .

factoring (using the famous a2 − b2 = (a− b)(a+ b)):

(y − 2x)(y + 2x) = 0 .

Which means that either y = 2x or y = −2x. Plugging these into the last equation we get

2x2 + (±2x)2 = 6 ,

so 2x2 + 4x2 = 6 which is 6x2 = 6, and dividing both sides by 6 we get

x2 = 1 ,

which has two solutions x = −1 and x = 1. Plugging back into y = 2x and y = −2x we get four
finalists:

(−1,−2) , (−1, 2) , (1,−2) , (1, 2) .
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Plugging-into f(x, y) we do the final contest:

f(−1,−2) = (−1)(−2)2 = −4 , f(−1, 2) = (−1)(2)2 = −4 , f(1,−2) = (1)(−2)2 = 4 , f(1, 2) = (1)(2)2 = 4 ,

f(−
√

3, 0) = 0 , f(
√

3, 0) = 0 .

Amongst these the maximum value is 4 and the minimum value is −4.

Ans.: max. value is 4 [type number] min. value is −4 [type number].

Mistakes People make: Trouble with the algebra. Remember the first thing to try is to divide
the first equation by the second (to get rid of λ).
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10. Find the local maximum and minimum values, and saddle point(s) of the function f(x, y) =
x4 + y4 − 4xy + 2.

Local maximum value(s): none

Local minimum value(s): 0 [type number]

saddle point(s): (0, 0) [type point]

Solution of 10.: Here f = x4 + y4 − 4xy + 2 so

fx = 4x3 − 4y , fy = 4y3 − 4x .

We also need, for later,

fxx = 12x2 , fxy = −4 , fyy = 12y2 .

We first have to solve the system of two equations and two unknowns, fx = 0, fy = 0, which in
this problem is:

4x3 − 4y = 0 , 4y3 − 4x = 0 .

Simplifying:
x3 − y = 0 , y3 − x = 0 .

So from the first equation, y = x3 and plugging into the second (x3)3 − x = 0 so x9 − x = 0.
Factoring gives x(x8 − 1) = 0. Recall that xeven = 1 has two roots x = −1 and x = 1, (on the
other hand xodd = 1 only has one solution x = 1. So we have three solutions altogether:

x = −1 , x = 0 , x = 1 .

.

But since y = x3 always:

x = −1 implies y = (−1)3 = −1 yielding the point: (−1,−1).

x = 0 implies y = (0)3 = 0 yielding the point: (0, 0),

x = 1, implies y = (1)3 = 1 yielding the point: (1, 1).

Now it is time to investigate each of our points one at a time.

Recall the discriminant
D = (fxx)(fyy)− (fxy)2 .
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For the point (−1,−1) fxx = 12(−1)2 = 12 > 0 fyy = 12(−1)2 = 12 , fxy = −4. So D(−1,−1) =
(12)(12)− (−4)2 = 144− 16 = 128 > 0, and since fxx(−1,−1) > 0 we conclude that this point is a
local minimum and the corresponding value is f(−1,−1) = (−1)4 + (−1)4− 4(−1)(−1) + 2 = 0.

For the point (0, 0) fxx = 12(0)2 = 0 fyy = 12(0)2 = 0 , fxy = −4. So D(0, 0) = (0)(0)− (−4)2 =
0− 16 = −16 < 0, we conclude that this point is a saddle point.

For the point (1, 1) fxx = 12(1)2 = 12 > 0 fyy = 12(1)2 = 12 , fxy = −4. So D(1, 1) =
(12)(12) − (−4)2 = 144 − 16 = 128 > 0, and since fxx(1, 1) > 0 we conclude that this point is a
local minimum and the corresponding value is f(1, 1) = (1)4 + (1)4 − 4(1)(1) + 2 = 0.

Ans.: There are no local maxima. The local minimum value is 0 (that takes place at (−1,−1) and
at (1, 1)) and there is one saddle point at (0, 0).

Some Mistakes People Make: When doing the algebra a few people forgot the x = 0 option.
Also When plugging-in to get the values, plug-into f(x, y) not D(x, y). The actual values of D are
not important, only whether they are positive or negative.
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