So far we considered one diff.eq. with one unknown function to be found, usually written \(y(t) \) or \(y(x) \), where \(t \) or \(x \) were the independent variable and \(y \) was the dependent variable.

Often, in applications, we have several (say \(n \)) differential equations with several (usually the same number, \(n \)) of unknown functions, called \(x_1(t), x_2(t), \ldots, x_n(t) \). We only consider first order equations, i.e. when we do systems, we only have the first derivative show up.

The general format of a System of First-Order Differential Equations with \(n \) functions to look for, \(x_1(t), \ldots, x_n(t) \) is

\[
\begin{align*}
x'_1(t) &= F_1(t, x_1(t), x_2(t), \ldots, x_n(t)) , \\
x'_2(t) &= F_2(t, x_1(t), x_2(t), \ldots, x_n(t)) , \\
& \quad \vdots \\
& \quad \vdots \\
x'_n(t) &= F_n(t, x_1(t), x_2(t), \ldots, x_n(t)) .
\end{align*}
\]

Here \(F_1(t, x_1, \ldots, x_n), \ldots, F_n(t, x_1, \ldots, x_n) \) are some (possibly very complicated) multivariable functions of \(n + 1 \) arguments.

If we specify initial conditions

\[
x_1(t_0) = x_1^0 , \quad x_2(t_0) = x_2^0 , \quad \ldots , \quad x_n(t_0) = x_n^0 ,
\]

then we have an initial value problem.

Of course, it is usually not possible to get an exact solution, in terms of a formula, and the best that we can hope for is to find good approximations, on the computer, but, in an abstract sense, we know that solutions exist, if the functions \(F_1, F_2, \ldots, F_n \) featured in the system, are not too crazy.

We have

If the functions \(F_1, \ldots, F_n \) and all their partial derivatives are continuous (do not blow up and have no breaks) in a box-like region \(R \) of the \((n + 1) \) dimensional \(t x_1 \ldots x_n \) space containing the point \((t_0, x_1^0, \ldots, x_n^0) \). Then there is an interval \(|t - t_0| < h\) in which there is unique solution of the above initial value problem.
An important special case of systems of Diff.Eqs. are **Linear Systems of Diff.Eq.s.** whose format is

\[
x'_1(t) = p_{11}(t)x_1(t) + \ldots + p_{1n}(t)x_n + g_1(t) \\
x'_2(t) = p_{21}(t)x_1(t) + \ldots + p_{2n}(t)x_n + g_2(t) \\
\ldots \\
\ldots \\
x'_n(t) = p_{n1}(t)x_1(t) + \ldots + p_{nn}(t)x_n + g_n(t) .
\]

If all the \(g_i(t)\) are 0 then we have a **homogeneous system**.

If all the coefficient functions \(p_{ij}(t)\) are continuous in an interval \(I\), then we are guaranteed a solution satisfying any initial conditions.

Converting ONE Higher-Order Diff.Eq. to a FIRST-ORDER System

Whenever we have one diff.eq. of the format

\[
y^{(n)}(t) = F(t, y(t), y'(t), \ldots, y^{(n-1)}(t)) ,
\]

there is a quick way to make it into a first order system, as follows. Assuming that we already know \(y(t)\), we define

\[
x_1(t) = y(t) , \quad x_2(t) = y'(t) , \quad x_3(t) = y''(t) , \quad \ldots , \quad x_n(t) = y^{(n-1)}(t),
\]

then

\[
x'_1(t) = x_2(t) \\
x'_2(t) = x_3(t) \\
x'_3(t) = x_4(t) \\
\ldots \\
x'_{n-1}(t) = x_n(t) \\
x'_n(t) = F(t, x_1, \ldots, x_n) .
\]

Note that only the last equation is “complicated”, the first \(n - 1\) ones are very simple.

Problem 17.1: Convert the following third-order diff.eq. to a system of first-order diff.eq.s

\[
y'''(t) = \cos(y''(t) + t^3 + y'(t)y(t)) + \sin(y(t))
\]

Solutions to 17.1: The first \(n - 1\) equations are **always** the same. Here \(n = 3\) (since it is a third-order diff.eq.) so our first two equations are

\[
x'_1(t) = x_2(t)
\]
\[x'_2(t) = x_3(t) \]
and to get the last one, you replace \(y'''(t) \) by \(x'_2(t) \) and \(y''(t) \) by \(x_3(t) \), \(y'(t) \) by \(x_2(t) \), and \(y(t) \) by \(x_1(t) \). In this problem
\[x'_3(t) = \cos(x_3(t) + t^3 + x_2(t)x_1(t)) + \sin(x_1(t)) \]

Ans. to 17.1:
\[
\begin{align*}
x'_1(t) &= x_2(t) , \\
x'_2(t) &= x_3(t) , \\
x'_3(t) &= \cos(x_3(t) + t^3 + x_2(t)x_1(t)) + \sin(x_1(t)).
\end{align*}
\]

But sometimes one can go the other way. Given a first-order system, we can solve it using what we know about higher-order diff.eq. Lucky for us, we only need to do it for linear systems with constant coefficients.

Problem 17.2 Solve the initial value problem for the system
\[
\begin{align*}
x'_1(t) &= -2x_1(t) + x_2(t) , \\
x'_2(t) &= x_1(t) - 2x_2(t) ; \\
x_1(0) &= 2 , \\
x_2(0) &= 3 .
\end{align*}
\]

Solution to 17.2

Step 1: Use the first equation, and algebra, to express \(x_2(t) \) in terms of \(x_1(t) \) (and its derivative \(x'_1(t) \)).
\[
x_2(t) = x'_1(t) + 2x_1(t)
\]

Step 2: Substitute this into second equation:
\[
(x'_1(t) + 2x_1(t))^' = x_1(t) - 2(x'_1(t) + 2x_1(t))
\]

Step 3: Use calculus and algebra to simplify
\[
x''_1(t) + 2x'_1(t) = x_1(t) - 2x'_1(t) - 4x_1(t)
\]
\[
x''_1(t) + 4x'_1(t) + 3x_1(t) = 0
\]

Step 4: Go back to Step 1 and plug-in \(t = 0 \) and use algebra to find \(x'_1(0) \):
\[
x_2(0) = x'_1(0) + 2x_1(0) .
\]
\[
x'_1(0) = x_2(0) - 2x_1(0) = 3 - 2 \cdot 2 = 3 - 4 = -1 .
\]

Step 5: Solve the initial value problem
\[
x''_1(t) + 4x'_1(t) + 3x_1(t) = 0 , \\
x_1(0) = 2 , \\
x'_1(0) = -1
\]
We get \(x_1(t) = \frac{5}{2}e^{-t} - \frac{1}{2}e^{-3t} \)

Step 6: Go back to Step 1 and find out what is \(x_2(t) \):

\[
x_2(t) = x_1'(t) + 2x_1(t) = \left(\frac{5}{2}e^{-t} - \frac{1}{2}e^{-3t} \right)' + 2\left(\frac{5}{2}e^{-t} - \frac{1}{2}e^{-3t} \right) = -\frac{5}{2}e^{-t} + \frac{3}{2}e^{-3t} + 5e^{-t} - e^{-3t} = \frac{5}{2}e^{-t} + \frac{1}{2}e^{-3t}
\]

Ans. to 17.2: \(x_1(t) = \frac{5}{2}e^{-t} - \frac{1}{2}e^{-3t} \), \(x_2(t) = \frac{5}{2}e^{-t} + \frac{1}{2}e^{-3t} \).

Review of Vectors and Matrices

Look it up in wikipedia. In Maple you use the package LinearAlgebra. Look up the commands Matrix, Inverse, Multiply.