Solutions to the Attendance Quiz # 10 for Dr. Z.’s Calc4 for Oct. 7, 2013

1. Find the general solution to the following diff.eq.

\[y''(t) - 4y'(t) + 13y(t) = 0 \]

Sol. to 1: The characteristic equation is

\[r^2 - 4r + 13 = 0 \]

Its roots are

\[
\frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 13}}{2 \cdot 1} = \frac{4 \pm \sqrt{16 - 52}}{2} = \frac{4 \pm \sqrt{-36}}{2} = \frac{4 \pm 6i}{2} = 2 \pm 3i.
\]

So \(\lambda = 2 \) and \(\mu = 3 \) and the general solution is

\[y(t) = e^{2t}(c_1 \sin 3t + c_2 \cos 3t) \]

Ans. to 1: \(y(t) = e^{2t}(c_1 \sin 3t + c_2 \cos 3t) \), where \(c_1, c_2 \) are arbitrary constants.

Comments: Some people gave the answer

\[y(t) = c_1 e^{(2+3i)t} + c_2 e^{(2-3i)t} \]

This is correct, but not in the real world. You would get at most half credit for that. The answer should be without imaginary stuff (i.e. no \(i \)).

Some people gave \(y(t) = c_1 e^{(2+3i)} + c_2 e^{(2-3i)} \) This is nonsense (without the \(t \)). You would get no points for that.

2. Solve the following the initial value problem and state the nature of the oscillation (growing, steady, or decaying).

\[y''(t) + y(t) = 0 , \quad y(0) = 0 , \quad y'(0) = 1 \]

Sol. to 2: We first find the general solution. The characteristic equation is

\[r^2 + 1 = 0 \]

So \(r^2 = -1 \) and the roots are \(0 \pm \sqrt{-1} = \pm i = 0 \pm 1 \cdot i \). So \(\lambda = 0 \) and \(\mu = 1 \), and the general solution is

\[y(t) = c_1 \sin t + c_2 \cos t \]

For future reference:

\[y'(t) = c_1 \cos t - c_2 \sin t \].
Plug-in $t = 0$:

\[y(0) = c_1 \sin 0 + c_2 \cos 0 = c_2 \]
\[y'(0) = c_1 \cos 0 - c_2 \sin 0 = c_1 \]

Since $y(0) = 0$ and $y'(0) = 1$ we get the equations

\[0 = c_2 \quad , \quad 1 = c_1 \]

whose solutions are $c_1 = 1$ and $c_2 = 0$. Going back to the general solution, we have the specific solution

\[y(t) = 1 \cdot \sin t + 0 \cdot \cos t = \sin t \]

Since $\lambda = 0$ the solution is steady.

\textbf{Sol. to 2}: $y(t) = \sin t$. It is a steady solution.