1. Solve the initial value system

$$
\mathbf{x}^{\prime}(t)=\left(\begin{array}{ll}
-5 & 2 \\
-6 & 2
\end{array}\right) \mathbf{x}(t) \quad, \quad \mathbf{x}(0)=\binom{4}{7}
$$

Sol. to 1: We first form the characteristic matrix:

$$
\left(\begin{array}{cc}
-5-r & 2 \\
-6 & 2-r
\end{array}\right)
$$

We next take the determinant

$$
\operatorname{det}\left(\begin{array}{cc}
-5-r & 2 \\
-6 & 2-r
\end{array}\right)=(-5-r)(2-r)-2(-6)=(r+5)(r-2)+12=r^{2}+3 r+2
$$

We next set it equal to 0 , getting the characteristic equation

$$
r^{2}+3 r+2=0
$$

We next solve it. Since $r^{2}+3 r+2=(r+1)(r+2)$ we have to solve

$$
(r+1)(r+2)=0
$$

getting two eigenvalues, $r=-1$ and $r=-2$.
We next, one at a time, find a corresponding eigenfunction.
When $r=-1$ the characteristic matrix is

$$
\left(\begin{array}{cc}
-5-(-1) & 2 \\
-6 & 2-(-1)
\end{array}\right)=\left(\begin{array}{ll}
-4 & 2 \\
-6 & 3
\end{array}\right)
$$

A tentavive eigenvector $\binom{c_{1}}{c_{2}}$ satisfies

$$
\left(\begin{array}{ll}
-4 & 2 \\
-6 & 3
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{0}{0} .
$$

Spelling it out, we have to solve the system

$$
\begin{aligned}
& -4 c_{1}+2 c_{2}=0 \\
& -6 c_{1}+3 c_{2}=0
\end{aligned}
$$

From the first equation, we get $2 c_{2}=4 c_{1}$, so $c_{2}=2 c_{1}$, plugging this into the second equation gives $0=0$ (as it should!, the second equation is not allowed to add any more information). So the eigenvector corresponding to $r=-1$ is

$$
\binom{c_{1}}{2 c_{1}}=c_{1}\binom{1}{2}
$$

Putting $c_{1}=1$, we get that an eigenvector corresponding to $r=-1$ is $\binom{1}{2}$.
Note: Putting $c_{1}=1$ is convenient, but you may pick any non-zero value of c_{1} above.
When $r=-2$ the characteristic matrix is

$$
\left(\begin{array}{cc}
-5-(-2) & 2 \\
-6 & 2-(-2)
\end{array}\right)=\left(\begin{array}{ll}
-3 & 2 \\
-6 & 4
\end{array}\right)
$$

A tentavive eigenvector $\binom{c_{1}}{c_{2}}$ satisfies

$$
\left(\begin{array}{ll}
-3 & 2 \\
-6 & 4
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{0}{0}
$$

Spelling it out, we have to solve the system

$$
\begin{aligned}
& -3 c_{1}+2 c_{2}=0 \\
& -6 c_{1}+4 c_{2}=0
\end{aligned}
$$

From the first equation, we get $c_{2}=\frac{3}{2} c_{1}$, plugging this into the second equation gives $0=0$ (as it should!, the second equation is not allowed to add any more information). So the eigenvector corresponding to $r=-2$ is

$$
\binom{c_{1}}{\frac{3}{2} c_{1}}=c_{1}\binom{1}{\frac{3}{2}}
$$

Putting $c_{1}=2$, we get that an eigenvector corresponding to $r=-2$ is $\binom{2}{3}$.
Note: Putting $c_{1}=2$ is convenient (to clear fractions), but you may pick any non-zero value of c_{1} above.

Summarizing the Linear Algebra part:
$r=-1$ is an eignevalue with a corresponding eigenvector $\binom{1}{2}$,
$r=-2$ is an eignevalue with a corresponding eigenvector $\binom{2}{3}$.
Hence the General Solution is

$$
\mathbf{x}(t)=c_{1}\binom{1}{2} e^{-t}+c_{2}\binom{2}{3} e^{-2 t}
$$

Note: These c_{1}, c_{2} are arbitrary constants (no relation to the c_{1}, c_{2} above for finding the eigenvectors).

Now it is time to use the initial condition $\mathbf{x}(0)=\binom{4}{7}$.
Plugging-in $t=0$ in the general solution, we have

$$
\mathbf{x}(0)=c_{1}\binom{1}{2}+c_{2}\binom{2}{3} .
$$

So

$$
c_{1}\binom{1}{2}+c_{2}\binom{2}{3}=\binom{4}{7} .
$$

Spelling it out, we have to solve the system

$$
\begin{gathered}
c_{1}+2 c_{2}=4 \\
2 c_{1}+3 c_{2}=7
\end{gathered}
$$

From the first equation, we get $c_{1}=4-2 c_{2}$. Putting into the second:

$$
2\left(4-2 c_{2}\right)+3 c_{2}=7
$$

So

$$
\begin{gathered}
8-4 c_{2}+3 c_{2}=7 \\
c_{2}=1
\end{gathered}
$$

and hence $c_{1}=4-2 \cdot 1=4-2=2$.
Going back to the general solution above, and replacing c_{1} by 2 and c_{2} by 1 gives

$$
\mathbf{x}(t)=2\binom{1}{2} e^{-t}+\binom{2}{3} e^{-2 t}
$$

This is correct but not final. The final answer is obtained by by replacing $2\binom{1}{2}$ by $\binom{2}{4}$, so
Ans. to 1:

$$
\mathbf{x}(t)=\binom{2}{4} e^{-t}+\binom{2}{3} e^{-2 t} .
$$

