1. Find the general solution of the following diff. eq.

\[y'' + y' - 20y = 0 \ . \]

Sol. to 1: The characteristic equation is

\[r^2 + r - 20 = 0 \ . \]

Factoring

\[(r + 5)(r - 4) = 0 \ . \]

The roots are \(r_1 = -5, r_2 = 4 \) so the general solution is

\[y(t) = c_1 e^{-5t} + c_2 e^{4t} \ . \]

Ans. to 1: \(y(t) = c_1 e^{-5t} + c_2 e^{4t} \), where \(c_1 \) and \(c_2 \) are arbitrary constants.

2. Find the solution of the following initial value diff. eq.

\[y'' - 3y' + 2y = 0 \ , \ y(0) = 2 \ , \ y'(0) = 3 \ . \]

Sol. to 2:

The characteristic equation is

\[r^2 - 3r + 2 = 0 \ . \]

Factoring

\[(r - 1)(r - 2) = 0 \ . \]

The roots are \(r_1 = 1, r_2 = 2 \) so the general solution is

\[y(t) = c_1 e^t + c_2 e^{2t} \ . \]

Now we take the derivative

\[y'(t) = c_1 e^t + 2c_2 e^{2t} \ . \]

Now we plug-in \(t = 0 \):

\[y(0) = c_1 e^0 + c_2 e^{2\cdot0} = c_1 + c_2 \ . \]

\[y'(0) = c_1 e^0 + 2c_2 e^{2\cdot0} = c_1 + 2c_2 \ . \]

But the problem tells us that \(y(0) = 2 \) and \(y'(0) = 3 \), so we have to solve the system of two equations and two unknowns:

\[c_1 + c_2 = 2 \ , \ c_1 + 2c_2 = 3 \ . \]

The second equation minus the first one tells us that \(c_2 = 1 \) and plugging into the first (or second) equation, gives \(c_2 = 1 \). Going back to the general solution, we have

Ans. to 2: \(y(t) = e^t + e^{2t} \ . \)