Important Definition: Fourier Integral Representation

The Fourier Integral Representation of a function \(f(x) \) defined on the real line \((-\infty, \infty)\) is given by

\[
\frac{1}{\pi} \int_{0}^{\infty} [A(\alpha) \cos \alpha x + B(\alpha) \sin \alpha x] \, d\alpha,
\]

where

\[
A(\alpha) = \int_{-\infty}^{\infty} f(x) \cos \alpha x \, dx
\]

\[
B(\alpha) = \int_{-\infty}^{\infty} f(x) \sin \alpha x \, dx
\]

Important Theorem: If \(f(x) \) is well-behaved and \(\int_{-\infty}^{\infty} |f(x)| \, dx \) is finite, then the Fourier integral of \(f(x) \) “converges” to it (in the sense of an improper integral over \((0, \infty))\), if \(f(x) \) is continuous. If it is piece-wise continuous, it converges to it everywhere except at the discontinuities (in which case it is the average of the limits from the left and right).

Problem 20.1: Find the Fourier integral representation of the function

\[
f(x) = \begin{cases}
0, & \text{if } x < -1; \\
1, & \text{if } -1 \leq x < 2; \\
0, & \text{if } x > 2;
\end{cases}
\]

Solution:

\[
A(\alpha) = \int_{-\infty}^{\infty} f(x) \cos \alpha x \, dx = \int_{-1}^{-1} f(x) \cos \alpha x \, dx + \int_{1}^{1} f(x) \cos \alpha x \, dx + \int_{2}^{\infty} f(x) \cos \alpha x \, dx
\]

\[
= \int_{-1}^{-1} 0 \cdot \cos \alpha x \, dx + \int_{1}^{1} 1 \cdot \cos \alpha x \, dx + \int_{2}^{\infty} 0 \cdot \cos \alpha x \, dx = 0 + \int_{-1}^{1} \cos \alpha x \, dx + 0 = \int_{-1}^{1} \cos \alpha x \, dx
\]

\[
= \sin \alpha x \bigg|_{-1}^{1} = \frac{\sin(\alpha(2)) - \sin(\alpha(-1))}{\alpha} = \frac{\sin(2\alpha) - \sin(-\alpha)}{\alpha} = \frac{\sin 2\alpha + \sin \alpha}{\alpha}.
\]

Analogously,

\[
B(\alpha) = \int_{-\infty}^{\infty} f(x) \sin \alpha x \, dx = \int_{-1}^{-1} f(x) \sin \alpha x \, dx + \int_{1}^{1} f(x) \sin \alpha x \, dx + \int_{2}^{\infty} f(x) \sin \alpha x \, dx
\]

\[
= \int_{-1}^{-1} 0 \cdot \sin \alpha x \, dx + \int_{1}^{1} 1 \cdot \sin \alpha x \, dx + \int_{2}^{\infty} 0 \cdot \sin \alpha x \, dx = 0 + \int_{-1}^{1} \sin \alpha x \, dx + 0 = \int_{-1}^{1} \sin \alpha x \, dx
\]

\[
= -\cos \alpha x \bigg|_{-1}^{1} = -\frac{\cos(\alpha(2)) - \cos(\alpha(-1))}{\alpha} = -\frac{\cos(2\alpha) - \cos(-\alpha)}{\alpha} = -\frac{\cos 2\alpha - \cos \alpha}{\alpha}.
\]
Putting both $A(\alpha)$ and $B(\alpha)$ into the formula for the Fourier Integral of $f(x)$,
\[
\frac{1}{\pi} \int_0^\infty \left[A(\alpha) \cos \alpha x + B(\alpha) \sin \alpha x \right] d\alpha ,
\]
we get:
\[
\frac{1}{\pi} \int_0^\infty \left[\frac{\sin 2\alpha + \sin \alpha}{\alpha} \cos \alpha x - \frac{\cos 2\alpha - \cos \alpha}{\alpha} \sin \alpha x \right] d\alpha .
\]
This is a correct answer, but using trig. identities, we can get a nicer answer:
\[
\frac{1}{\pi} \int_0^\infty \frac{\sin 2\alpha \cos \alpha x - \cos 2\alpha \sin \alpha x}{\alpha} d\alpha = \frac{1}{\pi} \int_0^\infty \frac{\sin(2\alpha - \alpha x) + \sin(\alpha + \alpha x)}{\alpha} d\alpha
\]
\[
= \frac{1}{\pi} \int_0^\infty \frac{\sin(\alpha(2 - x)) + \sin(\alpha(1 + x))}{\alpha} d\alpha
\]
Ans. to 20.1: The Fourier integral representation of $f(x)$ of the problem is \(\frac{1}{\pi} \int_0^\infty \frac{\sin(\alpha(2 - x)) + \sin(\alpha(1 + x))}{\alpha} d\alpha \).

Important Definition: Fourier Cosine Integral

The Fourier Cosine Integral of an even function $f(x)$ defined on the real line $(-\infty, \infty)$ is the cosine integral
\[
\frac{2}{\pi} \int_0^\infty A(\alpha) \cos \alpha x d\alpha ,
\]
where
\[
A(\alpha) = \int_0^\infty f(x) \cos \alpha x dx
\]

Important Definition: Fourier Sine Integral

The Fourier Integral of an odd function $f(x)$ defined on the real line $(-\infty, \infty)$ is the sine integral
\[
\frac{2}{\pi} \int_0^\infty B(\alpha) \sin \alpha x d\alpha ,
\]
where
\[
B(\alpha) = \int_0^\infty f(x) \sin \alpha x dx
\]

Note: If the function $f(x)$ is only defined on the positive real line: $(0, \infty)$, then you can extend it either as an even function, and get a Fourier cosine integral, or as an odd function, and get a Fourier sine integral. Both of them are correct.

Problem 20.2: Find the cosine and sine integral representation of the function $f(x) = xe^{-3x}, x > 0$.

Solution:
\[
A(\alpha) = \int_0^\infty xe^{-3x} \cos \alpha x dx .
\]
Using Maple, or a table of integrals (or if you have half an hour to spare, integration by parts), we have

\[A(\alpha) = \frac{9 - \alpha^2}{(\alpha^2 + 9)^2} \].

Similarly,

\[B(\alpha) = \int_0^\infty xe^{-3x} \sin \alpha x \, dx \]

Using Maple, or a table of integrals, we have

\[B(\alpha) = \frac{6\alpha}{(\alpha^2 + 9)^2} \].

Putting it into the cosine and sine integrals, we have

Fourier-cosine representation:

\[\frac{2}{\pi} \int_0^\infty \frac{(9 - \alpha^2) \cos \alpha x}{(\alpha^2 + 9)^2} \, d\alpha \]

Fourier-sine representation:

\[\frac{2}{\pi} \int_0^\infty \frac{6\alpha}{(\alpha^2 + 9)^2} \sin \alpha x \, d\alpha = \frac{12}{\pi} \int_0^\infty \frac{\alpha}{(\alpha^2 + 9)^2} \sin \alpha x \, d\alpha \].

Ans. to 20.2: The Fourier-cosine representation of \(f(x) \) is \(\frac{2}{\pi} \int_0^\infty \frac{(9 - \alpha^2) \cos \alpha x}{(\alpha^2 + 9)^2} \, d\alpha \) and the Fourier-sine representation is \(\frac{12}{\pi} \int_0^\infty \frac{\alpha \sin \alpha x}{(\alpha^2 + 9)^2} \, d\alpha \).