1. (5 points) Find the first two coefficients of the Fourier-Legendre expansion of

\[f(x) = \begin{cases}
2, & \text{if } -1 < x < 0; \\
-1, & \text{if } 0 \leq x < 1.
\end{cases} \]

Sol. \(P_0(x) = 1, P_1(x) = x, P_2(x) = \frac{1}{2}(3x^2 - 1) \). The general formula is

\[c_n = \frac{2n + 1}{2} \int_{-1}^{1} f(x)P_n(x) \, dx. \]

So:

\[c_0 = \frac{2 \cdot 0 + 1}{2} \int_{-1}^{1} f(x)P_0(x) = \frac{1}{2} \int_{-1}^{1} f(x) = \frac{1}{2} \int_{-1}^{0} 2 + \frac{1}{2} \int_{-1}^{1} (-1) = \frac{1}{2} (2 - 1) = \frac{1}{2} \]

\[c_1 = \frac{2 \cdot 1 + 1}{2} \int_{-1}^{1} f(x)P_1(x) = \frac{3}{2} \int_{-1}^{1} f(x) \cdot x = \frac{3}{2} \int_{-1}^{0} 2x + \frac{3}{2} \int_{0}^{1} (-1)(x) \]

\[= \frac{3}{2} x^2 \bigg|_{-1}^{0} + \frac{3}{2} \left(\frac{-x^2}{2} \right)_{0}^{1} = \frac{3}{2} (0^2 - (-1)^2) + \frac{3}{2} \left(\frac{-1 - 0}{2} \right) = \frac{3}{2} - \frac{3}{4} = \frac{9}{4}. \]

Ans. to 1: The first two coefficients are \(c_0 = \frac{1}{2}, c_1 = -\frac{9}{4} \).

2. (5 points) Find product solutions, if possible, to the partial differential equation

\[\frac{\partial u}{\partial x} = 25 \frac{\partial u}{\partial y}. \]

Sol. Try \(u(x, y) = X(x)Y(y) \). So

\[X'(x)Y(y) = 25X(x)Y'(y). \]

Divided both sides by \(X(x)Y(y) \):

\[\frac{X'(x)}{X(x)} = 25 \frac{Y'(y)}{Y(y)}. \]

The left does not depend on \(y \), and the right does not depend on \(x \), and they are equal to each other, so neither depends on \(x \) or \(y \), so they are both equal to a number, let’s call it \(k \). We have traded one pde with two odes:

\[\frac{X'(x)}{X(x)} = k \]

\[25 \frac{Y'(y)}{Y(y)} = k. \]

These are

\[X'(x) - kX(x) = 0, \]
\[
Y'(y) - \left(\frac{k}{25}\right)Y(y) = 0.
\]

The general solutions are
\[
X(x) = c_1 e^{kx},
\]
\[
Y(y) = c_2 e^{\left(\frac{k}{25}\right)y}.
\]

So
\[
u(x, y) = (c_1 e^{kx})(c_2 e^{\left(\frac{k}{25}\right)y}) = (c_1 c_2) e^{kx} e^{\left(\frac{k}{25}\right)y}.
\]

Renaming \(c_1 c_2, C\), and simplifying we get
\[
u(x, y) = Ce^{kx + \left(\frac{k}{25}\right)y}.
\]

Ans. to 2: \(u(x, y) = Ce^{kx + \left(\frac{k}{25}\right)y}\), where \(C\) is an arbitrary constant.