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Abstraction is a great tool for mathematicians. Often, a problem that at first seems
intimidating is suddenly endowed with an elegant solution, once it is embedded in a
more general space. Like misdirection in a magic trick, certain specifics can blind one
to the bigger picture; they are conceptual red herrings.

For example, the French mathematical columnist Jean-Paul Delahaye [4] recently
posed the following brain-teaser, adapting a beautiful puzzle, of unknown origin, pop-
ularized by Peter Winkler [9, pp. 35–43].

Here is a free translation from the French:

Enigma: nine beetles and prime numbers

One places nine beetles on a circular track in such a way that the nine arc distances,
measured in meters, between two consecutive beetles are the first nine prime num-
bers, 2, 3, 5, 7, 11, 13, 17, 19, and 23. The order is arbitrary, and each number appears
exactly once as a distance.

At starting time, each beetle decides randomly whether she would go, traveling at a
speed of 1 meter per minute, clockwise or counter-clockwise. When two beetles bump
into each other, they immediately do a “U-turn,” i.e., reverse direction. We assume that
the size of the beetles is negligible. At the end of 50 minutes, after many collisions,
one notices the distances between the new positions of the beetles. The nine distances
are exactly as before, the first nine prime numbers! How to explain this miracle?

Before going on to the next section, we invite you to solve this puzzle all by
yourself.

Solution of the enigma Note that the length of the circular track is

2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 = 100

meters.
Let each beetle carry a flag, and whenever two beetles bump into each other, let them

exchange flags. Since the flags always move in the same direction, and also move at
a speed of 1 meter per minute, after 50 minutes, each flag is exactly at the antipode
of its original location; hence, the distances are the same! Of course, this works if the
original distances were any sequence of numbers: All that they have to obey is that
their sum equals 100, or more generally, that half the sum of the distances divides
the product of the speed (1 meter per minute in this puzzle) and the elapsed time (50
minutes in this puzzle).
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This variation, due to Delahaye, is much harder than the original version posed by
Winkler [9], where also the initial distances were arbitrary. In Delahaye’s rendition,
the solver is bluffed into trying to use the fact that the distances are primes; this was
the red herring. Something analogous happened to Paul Erdős, concerning covering
systems.

Covering systems

In 1950, Paul Erdős introduced the notion of covering systems [5]. A covering system
is a finite set of arithmetical progressions

{ai (mod mi) | 1 ≤ i ≤ N },
whose union is the set of all non-negative integers. For example

{0 (mod 1)},
is such a (not very interesting) covering system, while

{0 (mod 2) , 1 (mod 2)},
and

{0 (mod 5), 1 (mod 5), 2 (mod 5), 3 (mod 5), 4 (mod 5)},
are other, almost as boring, examples. A slightly more interesting example is

{0 (mod 2), 1 (mod 4), 3 (mod 4)}.
A covering system is exact if all the congruences are disjoint (like in the above

boring examples). It is distinct if all the moduli are different. (From now on, let a (b)

mean a (mod b).)
Erdős [6] gave the smallest possible example of a distinct covering system:

{0 (2), 0 (3), 1 (4), 5 (6), 7 (12)}.
Of course, the above covering system is not exact since, for example, 0 (2) and 0 (3)

both contain any multiple of 6. A theorem proved by Mirsky and (Donald) Newman,
and independently by Davenport and Rado (described by Erdős [6]) implies that a
covering system cannot be both exact and distinct. Even a stronger statement holds.
Assuming that our system {ai(mi)}N

i=1 is written in non-decreasing order of the mod-
uli m1 ≤ m2 ≤ · · · ≤ mN , the Mirsky–Newman–Davenport–Rado theorem asserts that
mN−1 = mN . In other words, the two top moduli are equal (and hence an exact cover-
ing system can never be distinct). See Zeilberger [10] for an exposition of their snappy
proof. While their proof was nice, it was not as nice as the combinatorial-geometrical
proof that was found by Berger, Felzenbaum, and Fraenkel [1, 2], and exposited by
Zeilberger [10]. In fact, they proved the more general Znam theorem that asserts that
the highest modulus shows up at least p times, where p is the smallest prime dividing
lcm ( m1, . . . , mN ) [10]. Jamie Simpson [8] independently found a similar proof.

The Berger–Felzenbaum–Fraenkel revolution: from number theory to discrete
geometry via the Chinese remainder theorem While it is true that the set of pos-
itive integers is an infinite set, a covering system is a finite object. In order to verify
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that a proposed covering system {ai(mi)}N
i=1 is indeed one, it suffices to check that it

covers all the integers n between 0 and M − 1, where

M = lcm ( m1, m2, . . . , mN ).

By the fundamental theorem of arithmetic

M = p
r1
1 p

r2
2 · · · prk

k ,

where p1, . . . , pk are primes and r1, . . . , rk are positive integers.
For the sake of simplicity, let’s assume that M is square-free, i.e., all the exponents

r1, . . . , rk equal 1. The same reasoning, only slightly more complicated, applies in the
general case. Now we have M = p1p2 · · · pk.

The ancient, but still useful, Chinese remainder theorem tells you that there is a
bijection between the set of integers between 0 and M − 1, which we shall denote
[0, M − 1], and the Cartesian product of [0, pi − 1], i = 1, . . . , k,

f : [0, M − 1] →
k∏

i=1

[0, pi − 1],

defined by

f (x) := [x (mod p1) , x (mod p2) , . . . , x (mod pk) ].

So each integer in [0, M − 1] is represented by a point in the p1 × p2 × · · · × pk k-
dimensional discrete box

∏k

i=1[0, pi − 1].
If a(m) is a member of our covering system, then since m is a divisor of M , it can

be written as a product of some of the primes in {p1, . . . , pk}, say

m = pi1 pi2 · · · pis .

Let

mi1 = a (mod pi1), mi2 = a (mod pi2), . . . , mis = a (mod pis ).

It follows that the members of the congruence a(m) correspond to the points in the
(k − s)-dimensional sub-box

{(x1, . . . , xk) ∈ [0, p1 − 1] × · · · × [0, pk − 1] | xi1 = mi1, . . . , xis = mis }.
For example, if M = 30 = 2 · 3 · 5, the congruence class 7(10), corresponds to the
one-dimensional sub-box (since 7 (mod 2) = 1 and 7 (mod 5) = 2)

{(x1, x2, x3) : x1 = 1, 0 ≤ x2 ≤ 2, x3 = 2}.
In other words, a covering system (with square-free M) is nothing but a way of

expressing a certain k-dimensional discrete box as a union of sub-boxes. This was the
beautiful insight of Marc Berger, Alex Felzenbaum, and Aviezri Fraenkel.

Erdős’s famous problem and Bob Hough’s refutation Erdős [6] famously asked
whether there exists a distinct covering system

ai (mod m)i, 1 ≤ i ≤ N, m1 < m2 < · · · < mN,

with the smallest modulus, m1, arbitrarily large.
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As computers got bigger and faster, people (and their computers) came up with
examples that progressively made m1 larger and larger, and many humans thought that
indeed m1 can be made as large as one wishes. This was brilliantly refuted by Bob
Hough [7] who proved that m1 ≤ 1016. This is definitely not sharp, and the true largest
m1 is probably less than 1000.

Let’s now move on from number theory to something apparently very different:
logic!

Boolean functions

Let’s recall some basic definitions. A Boolean function (named after George Boole
[3]) of n variables is a function from {false, true}n to {false, true}. Altogether there are
22n

Boolean functions of n variables. Any Boolean function f (x1, . . . , xn), is deter-
mined by its truth table, or equivalently, by the set f −1(true), one of the 22n

subsets of
{false, true}n.

The simplest Boolean functions are the constant functions true (the tautology) cor-
responding to the whole of {false, true}n, and false (the anti-tautology) corresponding
to the empty set.

In addition to the above constant Boolean functions, there are three atomic func-
tions. The simplest is the unary function NOT, denoted by x̄, that is defined by

x̄ =
{

false , if x = true
true , if x = false.

The two other fundamental Boolean functions are the (inclusive) OR, denoted by
∨, and AND, denoted by ∧. The expression x ∨ y is true unless both x and y are false,
and x ∧ y is true only when both x and y are true.

By iterating these three operations on n variables, one can get many Boolean expres-
sions, and each Boolean function has many possible expressions.

From now on we will denote, as usual, true by 1 and false by 0. Also let x1 = x and
x0 = x̄ = 1 − x.

One particularly simple type of expression is a (pure) conjunction. It is anything of
the form (for some t , called its size),

x
j1
i1

∧ · · · ∧ x
jt
it
,

where 1 ≤ i1 < · · · < it ≤ n and ji ∈ {0, 1} for all 1 ≤ i ≤ t .
Of interest to us is the type of expression called the disjunctive normal form (DNF).

A DNF has the form

N∨
i=1

Ci,

where each Ci is a pure conjunction.
Every Boolean expression corresponds to a unique function, but every function can

be expressed in many ways, and even in many ways that are DNF. The most straight-
forward way is the canonical DNF form

∨
{v∈f −1(1)}

n∧
i=1

x
vi

i .
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Note that a pure conjunction of length t

x
j1
i1

∧ · · · ∧ x
jt
it

corresponds to a sub-cube of dimension n − t , namely to

{(x1, . . . , xn) | xi1 = j1, . . . , xit = jt}.
Hence, one can view a DNF as a (usually not exact) covering of the set f −1(1) of

truth-vectors by sub-cubes. In particular, a DNF tautology is a covering of the whole
n-dimensional unit cube by lower-dimensional sub-cubes.

DNFs and the million dollar problem The most fundamental problem in theoretical
computer science, the question of whether P is not NP (of course it is not, but proving
it rigorously is another matter), is equivalent to the question of whether there exists a
polynomial time algorithm that decides if a given disjunctive normal form expression
is the tautology (i.e., the constant function 1). Of course, there is an obvious brute force
algorithm: For each term, find the truth-vectors covered by it, take the union, and see
whether it contains all the 2n members of {0, 1}n. But this takes exponential time and
memory.

The covering system analog We can formulate a similar problem based on covering
systems. Input a system of congruences

ai (mod mi) 1 ≤ i ≤ N,

and decide, in polynomial time, whether it is a covering system. Initially it seems that
we need to check infinitely many cases, but of course (as already noted above), it
suffices to check whether every integer between 1 and lcm ( m1, . . . , mN) belongs to
at least one of the congruences. This seems fast enough! Alas, the size of the input
is the sum of the number of digits of the ai’s and mi’s. This is less than a constant
times the logarithm of lcm ( m1, . . . , mN), so just like for Boolean functions, the naive
algorithm requires time (and space) exponential in the input size.

Boolean function analogs of covering systems

We next consider Boolean function analogs of covering systems. The first one to con-
sider such analogs was Melkamu Zeleke [11]. Here we continue his pioneering work.
We saw that a DNF tautology is nothing but a covering of the n-dimensional unit cube
{0, 1}n by sub-cubes. So it is the analog of a covering system.

The analog of exact covering systems is obvious: all the terms should cover disjoint
sub-cubes. For example, when n = 2, (from now on xy means x ∧ y)

x1x2 ∨ x1x̄2 ∨ x̄1x2 ∨ x̄1x̄2,

and

x1 ∨ x̄1x2 ∨ x̄1x̄2,

are such.
In order to define distinct DNF, we define the support of a conjunction as the

set of the variables that participate. For example, the support of the term x̄1x̄3x4x6

is the set {x1, x3, x4, x6}. In other words, we ignore the negations. For each t-subset
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of {x1, . . . , xn}, there are 2t conjunctions with that support. Geometrically speaking,
two terms with the same support correspond to sub-cubes which are “parallel” to each
other.

Note that the supports correspond to the modulus, m, and the assignments of nega-
tions (or no negation) corresponds to a residue class modulo m.

A DNF tautology is distinct if it has distinct supports.
An obvious example of a distinct DNF tautology in n variables is

n∨
i=1

xi ∨ ∧n
i=1x̄i .

More generally, for every 1 ≤ t ≤ n, (t �= n/2) the following is a distinct DNF
tautology:

⎛
⎝ ∨

1≤i1<i2<···<it≤n

xi1 · · · xit

⎞
⎠ ∨

⎛
⎝ ∨

1≤j1<j2<···<jn−t≤n

x̄j1 · · · x̄jn−t

⎞
⎠ .

This follows from the fact that by the pigeon-hole principle, every 0 − 1 vector of
length n has either at least t 1’s or at least n-t 0’s.

The Boolean analog of the Mirsky–Newman–Davenport–Rado theorem is almost
trivial. First, suppose we have an exact DNF tautology where the largest support has
size n. That corresponds to a point (a 0-dimensional sub-cube). If it is the only one,
then since a conjunction of length t covers 2n−t points, if all the other ones are strictly
smaller than n, and since they are all disjoint, they cover an even number of points,
hence there is no way that an exact DNF tautology would only have one term of size
n.

If the largest size of a term is <n, then by projecting on appropriate sub-boxes one
can reduce it to the former case, and see that it must have a mate.

The Boolean analog of the Erdős problem is true Taking n to be odd, the above
DNF tautology with t = (n − 1)/2 has “minimal moduli” (supports) of size (n − 1)/2,
and that can be made as large as one wishes.

First challenge This leads to a more challenging problem: For each specific n, how
large can the minimum clause size, let’s call it k, be in a distinct DNF tautology?

A simple necessary condition, on density grounds, is that

n∑
i=k

(
n

i

)
1

2i
≥ 1.

(Each subset of size i of {1, . . . , n} can only show up once and covers 2n−i vertices
of the n-dimensional unit cube. Now use Boole’s inequality that says that the number
of elements of a union of sets is less than or equal to the sum of their cardinalities.)

Let An be the largest such k. The first 14 values of An are

1, 1, 1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 10.

We were able to find such optimal distinct DNF tautologies for all n ≤ 14 except
for n = 10, where the best that we came up with was one that covers 1008 out of the
1024 vertices of the 10-dimensional unit cube, leaving 16 points uncovered, and for
n = 14, where 276 out of the 214 = 16,384 points were left uncovered. See out1.txt
in the supplementary materials.
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Second challenge Another challenge is to come up with distinct DNF tautologies
with all the terms of the same size. By density arguments, a necessary condition for
the existence of such a distinct DNF tautology is(

n

m

)
1

2m
≥ 1.

Let Bm be the largest such m. The first 14 values are

0, 0, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 9, 9.

For n = 3, where B3 = 1, it is not possible, since x1 ∨ x2 ∨ x3 can’t cover every-
thing. We were also unable to find such optimal DNF tautologies for n = 5, where
B5 = 3 and we had to leave one vertex uncovered, n = 9, (with B9 = 6), where 13
vertices were left uncovered, and n = 13 (with B13 = 9) where 213 − 8090 = 102 ver-
tices were left uncovered. For the other cases with n ≤ 14, we met the challenge. See
out2.txt in the supplementary materials.

Many more examples can be gotten from the Maple package dt.txt in the supple-
mentary materials.

The general problem: covering a discrete box by non-parallel sub-boxes Let
{ai}∞

i=1 be a weakly increasing sequence of positive integers, with a1 ≥ 2.
Is it true that for every m there exists an n such that the box [1, a1] × · · · × [1, an]

can be covered by non-parallel sub-boxes, each of dimension ≤ n − m?
We saw that for the Boolean case, with ai = 2 for each i (and analogously, for each

constant sequence), the answer is trivially yes.
On the other hand, if

∞∑
i=1

1

ai

< ∞,

the answer is no, since
∞∏
i=1

(
1 + 1

ai

)
< ∞,

and by a density argument, all tails of the product will eventually be less than 1, so
there is not enough room.

Regarding the original Erdős problem, Hough [7] proved the answer is no in the
case with ai = pi , the sequence of prime numbers. (In fact, Hough proved the slightly
harder result where the moduli are not necessarily square-free.) Here the sum of the
reciprocals almost converges. The very naive Boole’s inequality does not suffice to
rule out a positive answer to the Erdős problem, but the Lovász local lemma suffices
to do the job.

So in a way, the fact that {ai} was initially the sequence of primes was a red herring.
In this general framework, what is important is the asymptotics of this sequence.

It would be interesting to see to what extent Hough’s proof of impossibility extends
to other sequences (ai) for which the answer is neither an obvious yes, nor an obvious
no.
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