1. (6 points each) Find the following limits, giving reasons for your answers. You may use any method from this course.

a. \(\lim_{x \to 3} \frac{x - 3}{\sqrt{x} - \sqrt{3}} = \frac{2 \sqrt{3}}{1} = 2 \sqrt{3} \)

\(\text{OR \ multiply \ by \ the \ conjugate, \ etc.} \)

b. \(\lim_{x \to 0} \frac{\cos 2x - 1}{x^3} = -2 \)

\(\text{OR} \quad \lim_{x \to 0} \frac{-2 \sin 2x}{2x} = -2 \lim_{x \to 0} \frac{\sin 2x}{2x} = -2 \cdot 1 = -2 \)

c. \(\lim_{x \to \infty} x \sin \left(\frac{2}{x}\right) = \frac{+2}{x} \)

\(\text{OR} \quad \lim_{x \to \infty} \frac{\sin \left(\frac{2}{x}\right)}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\cos \left(\frac{2}{x}\right)}{-\frac{1}{x^2}} = \cos(0) \cdot (1) = +2 \)
2. (9 points each) Find the derivatives of the following functions. You do not need to simplify your answers.

a. If \(y = \cos^3 x \sin(x^5) \) then \(\frac{dy}{dx} = \frac{\frac{d}{dx} (\cos^3 x) \sin(x^5) + \cos^3 x \frac{d}{dx} \sin(x^5)}{(1 + \ln x)^2} = 3 \cos^2 x (-\sin x) (\sin x^5) + \cos^3 x \cdot \cos x^5 \cdot 5x^4 \)

b. If \(y = \frac{x \sin x}{1 + \ln x} \), then \(\frac{dy}{dx} = \frac{(1 + \ln x) (\cos x + x \cos x) - x \sin x (\frac{1}{x})}{(1 + \ln x)^2} = \frac{x \cos x + x \cos x \ln x + \sin x \ln x}{(1 + \ln x)^2} \)
3. (9 points each) Find the following indefinite integrals.

a. \[\int \frac{t^2 + 5t + 1}{\sqrt{t}} \, dt = \]

\[
= \int \left(\frac{t^2}{\sqrt{t}} + \frac{5t}{\sqrt{t}} + \frac{1}{\sqrt{t}} \right) \, dt \\
= \int \left(t^{3/2} + 5t^{1/2} + t^{-1/2} \right) \, dt \\
= \frac{t^{5/2}}{\frac{5}{2}} + \frac{5t^{3/2}}{\frac{3}{2}} + \frac{t^{1/2}}{\frac{1}{2}} + C
\]

b. \[\int \sin(\cos x) \sin x \, dx = \]

\[
= \int \sin u \, (-du) = -\cos u + C \\
= \cos(\cos x) + C
\]
4. (9 points each).

a. \[\int_{3}^{4} (1+e^{x})^5 e^{x} \, dx = \quad \text{Do not try to simplify your answer!} \]

\[
\begin{align*}
\text{Let } u &= 1 + e^{x} \\
\text{du} &= e^{x} \, dx \\
\int_{1+e^{3}}^{1+e^{4}} u^5 \, du &= \frac{u^6}{6} \bigg|_{1+e^{3}}^{1+e^{4}} \\
&= \frac{1}{6} \left[(1+e^{4})^6 - (1+e^{3})^6 \right]
\end{align*}
\]

b. \[\int_{2}^{3} x \sqrt{x-1} \, dx = \]

\[
\begin{align*}
\text{Let } u &= x-1 \\
\text{du} &= dx \\
\int_{1}^{2} (u+1) u^{1/2} \, du &= \int_{1}^{2} (u^{3/2} + u^{1/2}) \, du \\
&= \left[\frac{u^{5/2}}{5/2} + \frac{u^{3/2}}{3/2} \right]_{1}^{2} \\
&= \frac{2^{5/2}}{5/2} - \frac{1}{5/2} + \frac{2^{3/2}}{3/2} - \frac{1}{3/2}
\end{align*}
\]
5. (17 points) Let \(f(x) = g(x^3 - 5) \). It is impossible to find \(g(x) \), but a few values of \(g(x) \) and \(g'(x) \) are known: \(g(1) = 2 \), \(g(2) = 5 \), \(g(3) = 7 \), \(g(4) = 2 \), \(g(5) = 11 \), \(g(6) = 13 \), \(g(7) = 21 \), \(g'(1) = 3 \), \(g'(2) = 2 \), \(g'(3) = 8 \), \(g'(4) = 10 \), \(g'(5) = 12 \), \(g'(6) = 21 \) and \(g'(7) = 23 \).

 a. Find \(f(2) \).

 \[
 f(2) = g(2^3 - 5) = g(3) = 7
 \]

 b. Find \(f'(2) \).

 \[
 f'(x) = g'(x^3 - 5) \cdot 3x^2
 \]

 \[
 f'(2) = g'(3) \cdot 12 = 8 \cdot 12 = 96
 \]

6. (18 points) Find the equation of the tangent line to the curve described by

\[
x^3y + xy^3 + x^2y - 2x^2 = -2
\]

at the point \((1, 0)\). Any correct equation specifying this line is acceptable.

\[
\text{Tangent line: } (y - 0) = 2 \left(x - 1 \right)
\]

\[
3x^2y + x^3y' + y^3 + 3xy^2y' + 2xy + x^2y' - 4x = 0
\]

Plug in \(x = 1, y = 0 \) \(\Rightarrow y' \)

\[
y' - 4 = 0
\]

\[
y' = 2
\]

\[
\frac{dy}{dx} = -\frac{3x^2y + y^3 + 2xy - 4x}{x^3 + 3xy^2 + x^2}
\]

If you want to work out \(\frac{dy}{dx} \) for all \(x \) and \(y \).
7. (18 points) The tangent line to \(y = f(x) \) at \(x = 2 \) is given by \(y = 7x + 3 \).
 a. (5 points) What is \(f'(2) \)? \(f' \)
 b. (5 points) What is \(f(2) \)? \(f(2) \)
 c. (6 points) Use linear approximation to approximate \(f(2.1) \).
 d. (2 points) If \(f''(x) < 0 \) for all \(x \), is this approximation too large or too small? \(\text{Too LARGE} \)

8. (17 pts) Find the absolute maximum and minimum of the function \(f(x) = x^3 + 3x^2 - 9x \) on the interval \([-2, 2]\).

<table>
<thead>
<tr>
<th>Absolute max:</th>
<th>((2, 22))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute min:</td>
<td>((1, -5))</td>
</tr>
</tbody>
</table>

\[
f'(x) = 3x^2 + 6x - 9 = 3(x^2 + 2x - 3) = 3(x+3)(x-1)
\]

\(C \) \((1) \#S: \ x = \frac{-3}{2}, 1 \)

\[
\begin{align*}
f(-2) & = 22 \\
f(1) & = -5 \\
f(2) & = -2
\end{align*}
\]
9. (6 points each)
a. Find \(\frac{dy}{dx} \) if \(y = x^{8e} \).

\[
\ln y = 8x \ln x
\]

\[
\frac{1}{y} \frac{dy}{dx} = 8 \ln x + 8 \frac{1}{x}
\]

\[
y' = x^{8e} \left[8 \ln x + 8 \right]
\]

b. Find \(\frac{dy}{dx} \) if \(y = \int_0^x \sin t^2 \, dt \).

\[
\frac{dy}{dx} = \sin x^2
\]

c. Find \(\frac{dy}{dx} \) if \(y = \int_0^{x^2} \sin t^2 \, dt \).

\[
\frac{dy}{dx} = \sin (x^4)^2 \cdot 2x
\]

\[
= (\sin x^4) \cdot 2x
\]
10. (18 points) A mad scientist sells radioactive bats to her friends. Experience tells her that she will sell 20 bats per month if she charges 30 dollars per bat and that each $2 decrease in price will result in four more sales per month. How much should she charge per bat to maximize her revenue?

| Price per bat: | $20 |

\[
R(x) = (30-2x)(20+4x)
\]

\[
R'(x) = -2(20+4x) + (80-2x) \cdot 4
\]

\[
= -80 - 8x + 120 - 8x
\]

\[
= 80 - 16x = 0 \Rightarrow x = 5
\]

She sells 40 bats at $20 each.
11. (18 points) A rectangular poster is to contain 80 square inches of printed matter with 5 inch margins at the top and bottom and 4 inch margins at the sides. If posterboard costs 10 cents per square inch, what are the dimensions of the least expensive poster satisfying the requirements?

\[
(x-8)(y-10) = 80
\]

\[
y = \frac{80}{x-8} + 10 = \frac{10x}{x-8}
\]

\[
A = xy = 10x^2
\]

\[
A' = \frac{(x-8)(20x) - 10x^2}{(x-8)^2}
\]

\[
= \frac{20x^2 - 160x - 10x^2}{(x-8)^2} = 0
\]

\[
= \frac{10x^2 - 160x}{(x-8)^2}
\]

\[
x = 16
\]

\[
y = 10 \cdot \frac{16}{8} = 20
\]
12. (18 points) Compute the value of the Riemann sum for the function $f(x) = x^2$ on the interval $[1, 3]$ using $n = 4$ and taking x_k^* to be the midpoint of the k^{th} interval in the partition. You can leave your answer as a sum of fractions.

Value:

\[
\frac{1}{2} \left[\left(\frac{1}{2} \right)^2 + \left(\frac{3}{4} \right)^2 + \left(\frac{5}{4} \right)^2 + \left(\frac{3}{2} \right)^2 \right]
\]

13. (18 points) The length of a rectangle is decreasing at 4 in/min and its width is increasing at 5 in/min. How fast is the length of the diagonal changing when the length is 8 in and the width is 6 in?

\[
\text{length} = l, \quad \text{width} = w
\]

\[
2^2 = l^2 + w^2
\]

\[
2 \frac{dl}{dt} = 2l \frac{dl}{dt} + 2w \frac{dw}{dt}
\]

\[
\frac{dl}{dt} = \frac{8 \cdot (-4) + 6 \cdot (5)}{10} = \frac{-2}{5}
\]

\[
\frac{dl}{dt} = -\frac{2}{5}
\]
14. (18 points) Sketch the graph of the function \(f(x) = \frac{x + 2}{(x + 1)^2} \). For this function, \(f'(x) = -\frac{x + 3}{(x + 1)^3} \) and \(f''(x) = \frac{2(x + 4)}{(x + 1)^4} \).

<table>
<thead>
<tr>
<th>Horizontal asymptote(s)</th>
<th>(y = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical asymptote(s)</td>
<td>(x = -1)</td>
</tr>
<tr>
<td>Increasing</td>
<td>((-3, -1))</td>
</tr>
<tr>
<td>Decreasing</td>
<td>((-\infty, -3) \cup (-1, \infty))</td>
</tr>
<tr>
<td>Concave up</td>
<td>((-4, -1) \cup (-1, \infty))</td>
</tr>
<tr>
<td>Concave down</td>
<td>((-\infty, -4))</td>
</tr>
<tr>
<td>Relative max/min</td>
<td>Relative min (x = -3) no relative max</td>
</tr>
<tr>
<td>Inflections</td>
<td>(x = -4)</td>
</tr>
</tbody>
</table>