1. Simplify the expression \(\frac{|2-x|}{x-2} \) if \(x > 2 \).

2. Find all solutions to the equation \(2^{x^2 - 2x} = 8 \).

3. Find the domain of \(f(x) = \frac{\ln(x)}{x-2} \). Write your answer in interval notation.

4. Solve the inequality \(\frac{3x + 6}{x(x-4)} \leq 0 \). Write your answer in interval notation.

5. An account in a certain bank pays 5% annual interest, compounded continuously. An initial deposit of $200 is made into the account. How many years does it take for the $200 to double? **You must write an exact answer in terms of logarithms.**

6. For each part, calculate the limit or show that it does not exist.

 (a) \(\lim_{x \to 0} \left(\frac{\sin(5x)}{3x} \cos(4x) \right) \)

 (b) \(\lim_{x \to -2} \left(\frac{x^2 + 3x + 2}{x^2 + x - 2} \right) \)

 (c) \(\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{x^2 + x} \right) \)

7. For each part, calculate \(f'(x) \). Do not simplify your answer after computing the derivative.

 (a) \(f(x) = \frac{\tan(x)}{\pi - \sec(x)} \)

 (b) \(f(x) = \cos(e^{-3x}) \)

 (c) \(f(x) = \sqrt{\ln(x^2 + 4) + x \sin(2x)} \)

 (d) \(f(x) = \frac{e^{1/x}}{x^{2/3} + x^{1/3}} \)

8. The graph of \(f(x) \) is given below. Find all values of \(x \) in the interval \((-4, 4)\) for which \(f \) is not continuous.

![Graph of f(x)](image)

9. Some values of \(g, h, g', \) and \(h' \) are given below. Use this table to answer parts (a) and (b).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(g(x))</th>
<th>(g'(x))</th>
<th>(h(x))</th>
<th>(h'(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>-3</td>
<td>-9</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>-1</td>
<td>1</td>
<td>-6</td>
</tr>
</tbody>
</table>

(a) Let \(f(x) = 3g(x)h(x) \). Calculate \(f'(2) \).

(b) Let \(F(x) = g(\sqrt{x}) \). Calculate \(F'(4) \).
10. Find an equation of the line normal to the graph of \(f(x) = 2x^2 - \ln(x) + 3 \) at \(x = 1 \). (Recall that the normal line is perpendicular to the tangent line.)

11. Let \(f(x) = 3\sqrt{x} \). Use the limit definition of the derivative to find \(f'(x) \). Show all work.

12. Find the values of the constants \(a \) and \(b \) that make \(f \) continuous at \(x = 9 \).

\[
 f(x) = \begin{cases}
 \sin(2\pi x) - 2ax & , \ x < 9 \\
 b & , \ x = 9 \\
 \frac{x - 9}{\sqrt{x} - 3} & , \ x > 9
\end{cases}
\]

You must use proper calculus and notation to give a complete and clear justification for your answer.

13. Find the \(x \)-coordinate of each point on the graph of \(y = \frac{1}{\sqrt{x}}(x^3 + 15) \) where the tangent line is perpendicular to the line \(x + 5y = 1 \).