1. Simplify the expression \(\frac{|2-x|}{x-2} \) if \(x > 2 \).

Solution

If \(x > 2 \), then \(2-x < 0 \), and so \(|2-x| = -(2-x) = x-2 \). Hence \(\frac{|2-x|}{x-2} = \frac{x-2}{x-2} = 1 \).

2. Find all solutions to the equation \(2^{x^2-2x} = 8 \).

Solution

The equation is equivalent to \(2^{x^2-2x} = 2^3 \), or \(x^2 - 2x = 3 \). After some algebra we have \((x-3)(x+1) = 0\), and so the solutions are \(x = -1 \) and \(x = 3 \).

3. Find the domain of \(f(x) = \frac{\ln(x)}{x-2} \). Write your answer in interval notation.

Solution

Note that the domain of \(\ln(x) \) is \((0, \infty)\). Hence the domain of \(f \) is \((0, 2) \cup (2, \infty)\) (the value \(x = 2 \) must be excluded since \(f(x) \) is undefined for \(x = 2 \) due to division by 0).

4. Solve the inequality \(\frac{3x+6}{x(x-4)} \leq 0 \). Write your answer in interval notation.

Solution

Use the cut-point (or sign chart) method. For our sign chart, the cut points are found by setting the numerator and denominator to 0 separately. Hence the cut points are \(x = -2 \), \(x = 0 \), and \(x = 4 \). Now we test the truth of the inequality using one point from each corresponding subinterval.

<table>
<thead>
<tr>
<th>interval</th>
<th>test point</th>
<th>sign of (\frac{3x+6}{x(x-4)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-\infty, -2))</td>
<td>(x = -3)</td>
<td>(\oplus) = (\ominus)</td>
</tr>
<tr>
<td>((-2, 0))</td>
<td>(x = -1)</td>
<td>(\oplus) = (\ominus)</td>
</tr>
<tr>
<td>((0, 4))</td>
<td>(x = 1)</td>
<td>(\oplus) = (\ominus)</td>
</tr>
<tr>
<td>((4, \infty))</td>
<td>(x = 5)</td>
<td>(\oplus) = (\ominus)</td>
</tr>
</tbody>
</table>

Checking the cut points themselves, we see the inequality is satisfied at \(x = -2 \) but neither \(x = 0 \) nor \(x = 4 \). So the final answer is: \((-\infty, -2] \cup (0, 4)\).
5. An account in a certain bank pays 5% annual interest, compounded continuously. An initial deposit of $200 is made into the account. How many years does it take for the $200 to double? **You must write an exact answer in terms of logarithms.**

Solution
The value of the account t years after the initial deposit is $P(t) = 200e^{0.05t}$. The time taken to double in value is the time T such that $P(T) = 400$. Solving the equation $200e^{0.05T} = 400$ gives $T = \ln(2)/0.05 = 20 \ln(2)$ years.

6. For each part, calculate the limit or show that it does not exist.

(a) $\lim_{x \to 0} \left(\frac{\sin(5x)}{3x} \cos(4x) \right)$

(b) $\lim_{x \to -2} \left(\frac{x^2 + 3x + 2}{x^2 + x - 2} \right)$

(c) $\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{x^2 + x} \right)$

Solution

(a) Recall that $\lim_{x \to 0} \frac{\sin(ax)}{ax} = 1$ for any $a \neq 0$. Hence we have

$$\lim_{x \to 0} \left(\frac{\sin(5x)}{3x} \cos(4x) \right) = \lim_{x \to 0} \left(\frac{5}{3} \cdot \frac{\sin(5x)}{5x} \cdot \cos(4x) \right) = \frac{5}{3} \cdot 1 \cdot 1 = \frac{5}{3}$$

(b) Cancel common factors, and then use direct substitution.

$$\lim_{x \to -2} \left(\frac{x^2 + 3x + 2}{x^2 + x - 2} \right) = \lim_{x \to -2} \left(\frac{(x + 2)(x + 1)}{(x + 2)(x - 1)} \right) = \lim_{x \to -2} \left(\frac{x + 1}{x - 1} \right) = \frac{-2 + 1}{-2 - 1} = \frac{-1}{3}$$

(c) Find a common denominator, cancel common factors, and then use direct substitution.

$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{x^2 + x} \right) = \lim_{x \to 0} \left(\frac{x + 1 - 1}{x^2 + x} \right) = \lim_{x \to 0} \left(\frac{1}{x + 1} \right) = \frac{1}{0 + 1} = 1$$

7. For each part, calculate $f'(x)$. Do not simplify your answer after computing the derivative.

(a) $f(x) = \frac{\tan(x)}{\pi - \sec(x)}$

(b) $f(x) = \cos(e^{-3x})$

(c) $f(x) = \sqrt{\ln(x^2 + 4) + x \sin(2x)}$

(d) $f(x) = \frac{e^{1/x}}{x^{2/3} + x^{1/3}}$

Solution

(a) Use quotient rule.

$$f'(x) = \frac{(\pi - \sec x)(\sec^2 x) - (\tan x)(-\sec x \tan x)}{(\pi - \sec x)^2}$$

(b) Use the chain rule twice.

$$f'(x) = -\sin(e^{-3x}) \cdot e^{-3x} \cdot (-3)$$
(c) Use chain rule first on the outermost square root function. Then use chain rule and product rule to compute the derivative of the inner function.

\[f'(x) = \frac{1}{2} \left(\ln(x^2 + 4) + x \sin(2x) \right)^{-1/2} \cdot \left(\frac{2x}{x^2 + 4} + \sin(2x) + 2x \cos(2x) \right) \]

(d) Start with quotient rule. When differentiating the numerator, use chain rule.

\[f'(x) = \frac{e^{1/x} \cdot \left(-\frac{1}{x^2} \right) \cdot (x^{2/3} + x^{1/3}) - e^{1/x} \cdot \left(\frac{2}{3}x^{-1/3} + \frac{1}{3}x^{-2/3} \right)}{(x^{2/3} + x^{1/3})^2} \]

8. The graph of \(f(x) \) is given below. Find all values of \(x \) in the interval \((-4, 4)\) for which \(f \) is not continuous.

![Graph of f(x)](image)

Solution

The function \(f(x) \) is discontinuous at \(x = -3, x = -1, x = 1, \) and \(x = 2. \)

9. Some values of \(g, h, g', \) and \(h' \) are given below. Use this table to answer parts (a) and (b).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(g(x))</th>
<th>(g'(x))</th>
<th>(h(x))</th>
<th>(h'(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>-3</td>
<td>-9</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>-1</td>
<td>1</td>
<td>-6</td>
</tr>
</tbody>
</table>

(a) Let \(f(x) = 3g(x)h(x) \). Calculate \(f'(2) \).
(b) Let \(F(x) = g(\sqrt{x}) \). Calculate \(F'(4) \).

Solution

(a) Use product rule.

\[f'(x) = 3g'(x)h(x) + 3g(x)h'(x) \]

Then substitute \(x = 2 \) and use the table of values.

\[f'(2) = 3(-9)(1) + 3(-3)(5) = -72 \]
(b) Use chain rule.

\[F'(x) = g'(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} \]

Then substitute \(x = 4 \) and use the table of values.

\[F'(4) = g'(2) \cdot \frac{1}{2 \cdot 2} = -\frac{9}{4} \]

10. Find an equation of the line normal to the graph of \(f(x) = 2x^2 - \ln(x) + 3 \) at \(x = 1 \). (Recall that the normal line is perpendicular to the tangent line.)

Solution
The derivative at a general point is

\[f'(x) = 4x - \frac{1}{x} \]

Hence \(f'(1) = 3 \), and so the slope of the normal line is \(-1/3\). The normal line must pass through \((1, f(1)) = (1, 5)\). Hence the equation of the normal line is

\[y - 5 = -\frac{1}{3}(x - 1) \]

11. Let \(f(x) = 3\sqrt{x} \). Use the limit definition of the derivative to find \(f'(x) \). Show all work.

Solution
We have the following work.

\[
\begin{align*}
 f'(x) &= \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \\
 &= \lim_{h \to 0} \frac{3\sqrt{x + h} - 3\sqrt{x}}{h} \\
 &= \lim_{h \to 0} \frac{9(x + h) - 9x}{h(3\sqrt{x + h} + 3\sqrt{x})} \\
 &= \lim_{h \to 0} \frac{9h}{h(3\sqrt{x + h} + 3\sqrt{x})} \\
 &= \lim_{h \to 0} \frac{9}{3\sqrt{x + h} + 3\sqrt{x}} = \frac{3}{2\sqrt{x}}
\end{align*}
\]

12. Find the values of the constants \(a \) and \(b \) that make \(f \) continuous at \(x = 9 \).

\[
f(x) = \begin{cases}
 \sin(2\pi x) - 2ax, & x < 9 \\
 b, & x = 9 \\
 \frac{x - 9}{\sqrt{x} - 3}, & x > 9
\end{cases}
\]

You must use proper calculus and notation to give a complete and clear justification for your answer.
Solution
If \(f \) is to be continuous at \(x = 9 \), then the left-limit, right-limit, and function value must all be equal at \(x = 9 \). So we first calculate each of these values.

\[
\lim_{x \to 9^-} f(x) = \lim_{x \to 9^-} (\sin(2\pi x) - 2ax) = \sin(18\pi) - 18a = -18a
\]

\[
\lim_{x \to 9^+} f(x) = \lim_{x \to 9^+} \left(\frac{x - 9}{\sqrt{x} - 3} \right) = \lim_{x \to 9^+} (\sqrt{x} + 3) = 6
\]

\[
f(9) = b
\]

These three values must be equal, so that \(-18a = 6 = b\), whence \(a = -\frac{1}{3} \) and \(b = 6 \).

13. Find the \(x \)-coordinate of each point on the graph of \(y = \frac{1}{\sqrt{x}}(x^3 + 15) \) where the tangent line is perpendicular to the line \(x + 5y = 1 \).

Solution
The slope of the given line \(x + 5y = 1 \) is \(-\frac{1}{5}\), whence we want to find all tangent lines with slope 5. Let \(f(x) = \frac{1}{\sqrt{x}}(x^3 + 15) \). So we must solve the equation \(f'(x) = 5 \). First we calculate \(f'(x) \) by rewriting \(f(x) \) in terms of power functions and using power rule.

\[
f(x) = x^{5/2} + 15x^{-1/2} \implies f'(x) = \frac{5}{2}x^{3/2} - \frac{15}{2}x^{-3/2}
\]

Now we set up and solve the equation \(f'(x) = 5 \).

\[
\frac{5}{2}x^{3/2} - \frac{15}{2}x^{-3/2} = 5
\]

\[
5x^{3/2} - 15x^{-3/2} = 10
\]

\[
x^{3/2} - 3x^{-3/2} = 2
\]

\[
x^3 - 3 = 2x^{3/2}
\]

\[
x^3 - 2x^{3/2} - 3 = 0
\]

\[
(x^{3/2} + 1)(x^{3/2} - 3) = 0
\]

The equation \(x^{3/2} + 1 = 0 \) has no solution since \(x^{3/2} \geq 0 \) for all \(x \). The equation \(x^{3/2} - 3 = 0 \) has the unique solution \(x = 3^{2/3} \) (which can also be written as \(x = 9^{1/3} \)). Hence the only solution to \(f'(x) = 5 \), and thus the only \(x \)-coordinate at which the tangent line is perpendicular to \(x + 5y = 1 \), is \(x = 9^{1/3} \).