List All Events

Download as iCal file

Nonlinear Analysis

Singular two dimensional area minimizing surfaces

Guido De Philippis, Courant Institute

Location:  Hill 705
Date & time: Tuesday, 12 November 2019 at 1:40PM - 2:50PM

Abstract: One of the oldest problem in geometric analysis and in the calculus of variations consists in finding a surface of least area surface spannend by a given smooth curve \(\gamma\). The approach of Douglas and Rad ensures, for each prescribed genus, the existence of a surface minimizing the area among all the ones with smaller genus. On the other hand, after the seminal work of Federer and Fleming, it is always possible to find a mass minimizing current spanned by \(\gamma\). When the Federer-Fleming solution is smooth (up to the boundary) , it naturally coincides with the Dougals-Rado solution. In co-dimension one, thanks to the seminal work of De Giorgi and Hardt-Simon, this is indeed the case. In higher co-dimension the question is not yet completely understood and new phenomena might appear. In this talk, after surveying the known results, I will present the construction of a smooth curve in a 4 dimensional Riemannian manifold which spans an area minimizing surface with infinite genus.

This is based on a joint work with C. De Lellis and J. Hirsch.