Seminars & Colloquia Calendar

Download as iCal file

Discrete Math

Long range order in random three-colorings of Z^d

Location:  Hill 705
Date & time: Monday, 24 October 2016 at 2:00PM - 2:11PM

Ohad Noy Feldheim, Stanford: Consider a random coloring of a bounded domain in the bipartite graph Z^d with the probability of each color configuration proportional to exp(-beta*N(F)), where beta>0, and N(F) is the number of nearest neighboring pairs colored by the same color. This model of random colorings biased towards being proper, is the antiferromagnetic 3-state Potts model from statistical physics, used to describe magnetic interactions in a spin system. The Kotecky conjecture is that in such a model with d >= 3, Fixing the boundary of a large even domain to take the color 0 and high enough beta, a sampled coloring would typically exhibits long-range order. In particular a single color occupies most of either the even or odd vertices of the domain. This is in contrast with the situation for small beta, when each bipartition class is equally occupied by each of the three colors. We give the first rigorous proof of the conjecture for large d. Our result extends previous works of Peled and of Galvin, Kahn, Randall and Sorkin, who treated the beta=infinity case, where the coloring is chosen uniformly from all proper three-colorings. In the talk we shell give a glimpse into the combinatorial methods used to tackle the problem. These rely on structural properties of odd-boundary subsets of Z^d. No background in statistical physics will be assumed and all terms will be thoroughly explained. Joint work with Yinon Spinka.

Special Note to All Travelers

Directions: map and driving directions. If you need information on public transportation, you may want to check the New Jersey Transit page.

Unfortunately, cancellations do occur from time to time. Feel free to call our department: 848-445-6969 before embarking on your journey. Thank you.