Seminars & Colloquia Calendar
Edge States in the Climate System: Exploring Global Instabilities and Critical Transitions
Valerio Lucarini - University of Reading
Location: HILL 705
Date & time: Thursday, 14 December 2017 at 12:00PM - 1:00PM
Abstract: Multistability is a ubiquitous feature in systems of geophysical relevance and provides key challenges for our ability to predict a system's response to perturbations. Near critical transitions small causes can lead to large effects and - for all practical purposes - irreversible changes in the properties of the system. The Earth climate is multistable: present astronomical and astrophysical conditions support two stable regimes, the warm climate we live in, and a snowball climate, characterized by global glaciation. We first provide an overview of methods and ideas relevant for studying the climate response to forcings and focus on the properties of critical transitions. Following an idea developed by Eckhardt and co. for the investigation of multistable turbulent flows, we study the global instability giving rise to the snowball/warm multistability in the climate system by identifying the climatic edge state, a saddle embedded in the boundary between the two basins of attraction of the stable climates. The edge state attracts initial conditions belonging to such a boundary and is the gate facilitating noise-induced transitions between competing attractors. We use a simplified yet Earth-like climate model constructed by coupling a primitive equations model of the atmosphere with a simple diffusive ocean. We refer to the climatic edge states as Melancholia states. We study their dynamics, their symmetry properties, and we follow a complex set of bifurcations. We find situations where the Melancholia state has chaotic dynamics. In these cases, the basin boundary between the two basins of attraction is a strange geometric set with a nearly zero codimension, and relate this feature to the time scale separation between instabilities occurring on weather and climatic time scales. We also discover a new stable climatic state characterized by non-trivial symmetry properties.
Chiara Damiolini, Ian Coley and Franco Rota -Charles Weibel Organizer's Page
Narek Hovsepyan and Ewerton Rocha Vieira Organizer's page
Ziming Shi, Sagun Chanillo, Xiaojun Huang, Chi Li, Jian Song Seminar website Old seminar website
Sepehr Assadi Seminar webpage
Jeffry Kahn, Bhargav Narayanan, Jinyoung Park Organizer's webpage
Robert Dougherty-Bliss and Doron Zeilberger --> homepage
Paul Feehan, Daniel Ketover, Natasa Sesum Organizer's webpage
Lev Borisov, Emanuel Diaconescu, Angela Gibney, Nicolas Tarasca, and Chris Woodward Organizer's webpage
Hong Chen Seminar webpage
Fanxin Wu and Nkhalo Malawo Organizer's website
James Holland; Organizer website
Organizers: Maxime Van de Moortel and Avy Soffer. Organizer's Page
Yanyan Li, Zheng-Chao Han, Jian Song, Natasa Sesum Organizer's Webpage
Organizer: Luochen Zhao
Yanyan Li, Zheng-Chao Han, Natasa Sesum, Jian Song Organizer's Page
Lisa Carbone, Yi-Zhi Huang, James Lepowsky, Siddhartha Sahi Organizer's webpage
Simon Thomas website
Kasper Larsen, Daniel Ocone and Kim Weston Organizer's page
Joel Lebowitz, Michael Kiessling
Yanyan Li, Dennis Kriventsov Organizer's Webpage
Alex V. Kontorovich, Vlada Sedláček seminar website
Stephen D. Miller
Organizers: Yanyan Li, Z.C. Han, Jian Song, Natasa Sesum
Kristen Hendricks, Xiaochun Rong, Hongbin Sun, Chenxi Wu Organizer's page
Fioralba Cakoni Seminar webpage
- Show events from all categories
Special Note to All Travelers
Directions: map and driving directions. If you need information on public transportation, you may want to check the New Jersey Transit page.
Unfortunately, cancellations do occur from time to time. Feel free to call our department: 848-445-6969 before embarking on your journey. Thank you.