Seminars & Colloquia Calendar

Download as iCal file

Algebra Seminar

Palindromicity and the local invariant cycle theorem

Patrick Brosnan (U.Maryland)

Location:  Hill 425
Date & time: Wednesday, 21 March 2018 at 2:00PM - 3:00PM

Abstract:  In its most basic form, the local invariant cycle theorem of Beilinson, Bernstein and Deligne (BBD) gives a surjection from the cohomology of the special fiber of a proper morphism of smooth varieties to the monodromy invariants of the general fiber. This result, which is one of the last theorems stated in the book by BBD, is a relatively easy consequence of their famous decomposition theorem.

In joint work with Tim Chow on a combinatorial problem, we needed a simple condition ensuring that the above surjection is actually an isomorphism. Our theorem is that this happens if and only if the special fiber has palindromic cohomology. I will explain the proof of this theorem and a generalization proved using the (now known) Kashiwara conjecture. I will also say a little bit about the combinatorial problem (the Shareshian-Wachs conjecture on Hessenberg varieties) which motivated our work.

Special Note to All Travelers

Directions: map and driving directions. If you need information on public transportation, you may want to check the New Jersey Transit page.

Unfortunately, cancellations do occur from time to time. Feel free to call our department: 848-445-6969 before embarking on your journey. Thank you.