Seminars & Colloquia Calendar

Download as iCal file

Lie Group Quantum Mathematics Seminar

The defining equations for some nilpotent varieties

Eric Sommers, University of Massachusetts

Location:  Hill 705
Date & time: Friday, 05 October 2018 at 12:00PM - 1:00PM

 Abstract:   In his 1963 paper "Lie group representations on polynomial rings," Kostant found the defining equations for the nilpotent cone of a simple Lie algebra and also proved it is a normal variety. Later Broer showed uniformly that the closure of the next biggest nilpotent orbit, the subregular nilpotent orbit, is a normal variety and found its defining equations. We generalize Broer's technique to the class of nilpotent orbits that are Richardson orbits for orthogonal short simple roots. The proof involves cohomological results for line bundles on cotangent bundles of generalized flag varieties and a result related to flat bases of invariant polynomials.

This is joint work with Ben Johnson.

Special Note to All Travelers

Directions: map and driving directions. If you need information on public transportation, you may want to check the New Jersey Transit page.

Unfortunately, cancellations do occur from time to time. Feel free to call our department: 848-445-6969 before embarking on your journey. Thank you.