Seminars & Colloquia Calendar

Download as iCal file


Cluster structures on Poisson-Lie groups

Michael Gekhtman (Univ. of Notre Dame)

Location:  Hill 705
Date & time: Wednesday, 11 March 2020 at 3:30PM - 4:30PM

Abstract:  Cluster algebras were introduced by Fomin and Zelevinsky almost 20 years ago and have since found exciting applications in many areas including algebraic geometry, representation theory, integrable systems, theoretical physics and Poisson geometry. The latter connection proved instrumental in uncovering  cluster algebra structures in coordinate rings of Poisson varieties such as Grassmannians and double Bruhat cells in semisimple Lie groups. In this talk, based on the joint work with M. Shapiro and A. Vainshtein, I will describe how a Poisson geometric point of view leads to a construction of multiple nonequivalent cluster structures in \(GL(n)\).


Special Note to All Travelers

Directions: map and driving directions. If you need information on public transportation, you may want to check the New Jersey Transit page.

Unfortunately, cancellations do occur from time to time. Feel free to call our department: 848-445-6969 before embarking on your journey. Thank you.