Seminars & Colloquia Calendar
Arithmetic and quasi-arithmetic hyperbolic reflection groups
Nikolay Bogachev (Skoltech & MIPT)
Location: Zoom Link: https://rutgers.zoom.us/j/95245984714?pwd=cXJXTldjUGpxdUk5WW9GMVhaREZ6UT09
Date & time: Tuesday, 22 September 2020 at 2:00PM - 3:00PM
Abstract: In 1967, Vinberg started a systematic study of hyperbolic reflection groups. In particular, he showed that Coxeter polytopes are natural fundamental domains of hyperbolic reflection groups and developed practically efficient methods that allow to determine compactness or volume finiteness of a given Coxeter polytope by looking at its Coxeter diagram. He also proved a (quasi-)arithmeticity criterion for hyperbolic lattices generated by reflections. In 1981, Vinberg showed that there are no compact Coxeter polytopes in hyperbolic spaces \(H^n\) for \(n>29\). Also, he showed that there are no arithmetic hyperbolic reflection groups \(H^n\) for \(n>29\), either. Due to the results of Nikulin (2007) and Agol, Belolipetsky, Storm, and Whyte (2008) it became known that there are only finitely many maximal arithmetic hyperbolic reflection groups in all dimensions. These results give hope that maximal arithmetic hyperbolic reflection groups can be classified.
A very interesting moment is that compact Coxeter polytopes are known only up to \(H^8\), and in \(H^7\) and \(H^8\) all the known examples are arithmetic. Thus, besides the problem of classification of arithmetic hyperbolic reflection groups (which remains open since 1970-80s) we have another very natural question (which is again open since 1980s): do there exist compact (both arithmetic and non-arithmetic) hyperbolic Coxeter polytopes in \(H^n\) for \(n>8\) ?
The talk will be devoted to the discussion of these two related problems. One part of the talk is based on the recent preprint https://arxiv.org/abs/2003.11944v2 where some new geometric classification method is described. The second part is based on a joint work with Alexander Kolpakov https://arxiv.org/abs/2002.11445v2 where we prove that each lower-dimensional face of a quasi-arithmetic Coxeter polytope, which happens to be itself a Coxeter polytope, is also quasi-arithmetic. We also provide a few illustrative examples.
R. Shapiro Organizer's Page
Chiara Damiolini, Ian Coley and Franco Rota -Charles Weibel Organizer's Page
Brooke Logan
Narek Hovsepyan and Ewerton Rocha Vieira Organizer's page
Ziming Shi, Sagun Chanillo, Xiaojun Huang, Chi Li, Jian Song Seminar website Old seminar website
Swastik Kopparty, Sepehr Assadi Seminar webpage
Jeffry Kahn, Bhargav Narayanan, Jinyoung Park Organizer's webpage
Brooke Ogrodnik, Website
Robert Dougherty-Bliss and Doron Zeilberger --> homepage
Paul Feehan, Daniel Ketover, Natasa Sesum Organizer's webpage
Lev Borisov, Emanuel Diaconescu, Angela Gibney, Nicolas Tarasca, and Chris Woodward Organizer's webpage
Hong Chen Seminar webpage
Fanxin Wu and Nkhalo Malawo
James Holland; Organizer website
Edna Jones Organizer's webpage
Brooke Ogrodnik website
Yanyan Li, Zheng-Chao Han, Jian Song, Natasa Sesum Organizer's Webpage
Organizer: Luochen Zhao
Yanyan Li, Zheng-Chao Han, Natasa Sesum, Jian Song Organizer's Page
Lisa Carbone, Yi-Zhi Huang, James Lepowsky, Siddhartha Sahi Organizer's webpage
Simon Thomas website
Kasper Larsen, Daniel Ocone and Kim Weston Organizer's page
Joel Lebowitz, Michael Kiessling
Yanyan Li, Haim Brezis Organizer's Webpage
Stephen D. Miller, John C. Miller, Alex V. Kontorovich, Alex Walker seminar website
Stephen D. Miller
Brooke Ogrodnik, Website
Organizers: Yanyan Li, Z.C. Han, Jian Song, Natasa Sesum
Yael Davidov Seminar webpage
Kristen Hendricks, Xiaochun Rong, Hongbin Sun, Chenxi Wu Organizer's page
Fioralba Cakoni Seminar webpage
Ebru Toprak, Organizer
Organizer's webpage: Organizer's webpage
- Show events from all categories
Special Note to All Travelers
Directions: map and driving directions. If you need information on public transportation, you may want to check the New Jersey Transit page.
Unfortunately, cancellations do occur from time to time. Feel free to call our department: 848-445-6969 before embarking on your journey. Thank you.